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Abstract. The consideration of some non-standard parametric Lagrangian
leads to a fictitious dynamical system which turns out to be equivalent to the
Euler problem for finding out all possible shapes of the lamina. Integrating
the respective differential equations one arrives at novel explicit parameteri-
zations of the Euler’s elastica curves. The geometry of the inflexional elastica
and especially that of the figure “eight” shape is studied in some detail and the
close relationship between the elastica problem and mathematical pendulum
is outlined.

1. Introduction

The elastic behaviour of roads and beams which attracts a continuous attention
since the time of Galileo, Bernoulli and Euler has generated recently a renewed
interest in plane [2, 3, 15], space [18] and space forms [1, 11]. The first elastic
problem was posed by Galileo around 1638 who asked the question about the force
required to break a beam set into a wall. James (or Jakob) Bernoulli raised in 1687
the question concerning the shape of the beam and had also succeeded in solving
the case of the so called rectangular elastica (second case from the top in Fig. 1).
Later on in 1742 Daniel Bernoulli wrote a letter to Euler in which he had suggested
to him to solve the general problem of the elastica. Following closely this sugges-
tion Euler cast the problem in the variational form and presented the solution in
an Appendix to his book on variational calculus which appeared in 1744. Euler
begins his investigation with establishing the equation of static equilibrium of the
“lamina” by means of the variational techniques developed in his treatise and then
rederives it from mechanical principles developed earlier by James Bernoulli. The
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Bernoulli-Euler theory which considers only bending deformations and neglects
shear deformations and stretching of the center line of the beam is given in detail
by Love [13]. The corresponding solutions were found by using the equivalence of
the elastica with that of the mathematical pendulum (see also Section five below).
Nine different classes can be distinguished and Love presents figures for the sev-
enth of them (cf. Fig.1 below). Later on Birkhoff and de Boor [2] have found the
fundamental equation of the Euler elastica without length constraint (i.e., the so
called free elastica)

κ̈(s) +
1
2
κ3(s) = 0. (1)

Here κ(s) is the curvature of the arclength parameterized smooth curve in the plane
and the dots denote the derivatives with respect to its natural parameter s.
In what follows we will derive the intrinsic equation of the non-free elastica by
introducing a fictitious dynamical system and present its explicit solutions in terms
of Jacobian elliptic functions and elliptic integrals.
We hope that these dynamical considerations could be of some interest in the many
other situations as well.

2. The Fictitious Dynamical System

Assuming that λ is a positive real number let us consider the following system of
nonlinearly coupled ordinary differential equations

ẍ− λzż = 0 (2)

z̈ + λzẋ = 0. (3)

It is quite natural to consider equations (2) and (3) as equations describing the
dynamics of a particle moving in XOZ plane.
It is easy to check by a direct computation that equations (2) and (3) are the Euler-
Lagrange equations

d
ds
Fẋ − Fx = 0,

d
ds
Fż − Fz = 0 (4)

associated with an action functional whose Lagrangian F can be taken of the form

F (x, z, ẋ, ż, t) =
1
2

(
ẋ2 + ż2

)
− λ

3
z (zẋ− xż)

in which λ plays the role of the Lagrange multiplier. The particle trajectories
γ(s) = x (s) determined by the parametric equation

x (s) = (x(s), z (s)) (5)

which we will assume to be traced with unit speed, i.e.,

ẋ2(s) + ż2(s) = 1 (6)
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describe the plane curve we are seeking.

3. Integration

A theorem in the classical differential geometry (see e.g. [17]) claims that any
plane curves is determined uniquely (up to Euclidean motion in the plane) by its
curvature which in our settings can be written as

κ(s) = ẋz̈ − żẍ. (7)

It is easy to see also that the equations (2) and (3) imply

κ(s) = −λz(s). (8)

This claim can be proved in the following manner: multiplying (3) by ẋ and sub-
tracting from it the result of multiplication of (2) by ż and taking into account (6)
we get exactly (8)

ẋz̈ − żẍ = −λz.

Actually, the integration of (2) is immediate and produces

ẋ =
λz2

2
+ µ (9)

where µ is the integration constant.
Inserting the expression for ẋ from (9) into (3) leads to the equation

z̈ +
λ2z3

2
+ λµz = 0. (10)

When rewritten in terms of the curvature the above equation becomes

κ̈(s) +
1
2
κ3(s) + σκ(s) = 0, σ = λµ (11)

which is known as the intrinsic equation [3] of the elastica with tension σ and in
this way we have reduced our fictitious dynamical system to the elastica problem.
Continuing with the integration of (10) we get

ż2 = −λ
2z4

4
− λµz2 + C (12)

where C is another integration constant which however is not arbitrary but fixed
by (6), i.e.,

C = 1− µ2. (13)

It is a trivial matter to find that the right hand side of equation (12) can be factorized
in the form

λ2

4

(
2(1− µ)

λ
− z2

)(
z2 +

2(1 + µ)
λ

)
(14)



178 Peter Djondjorov, Mariana Hadzhilazova, Ivaïlo Mladenov and Vassil Vassilev

which allows the equation itself to be rewritten as∫ dz√(
2(1−µ)
λ − z2

) (
z2 + 2(1+µ)

λ

) =
λs

2
· (15)

Examination of the above integral leads to the conclusion that µ should be strictly
smaller than one and further analysis shows that we have the following obvious
possibilities:

A) µ ∈ (−1, 1)
B) µ = −1
C) µ < −1.

These possibilities will be considered below case by case:
a) Introducing

a2 =
2(1− µ)

λ
, c2 =

2(1 + µ)
λ

· (16)

The integration in this case can be done with the help of the Jacobian elliptic func-
tion cn(u, k) in which u is the argument and k is the so called modulus of the
elliptic function (for more details on the elliptic functions, their integrals and prop-
erties see e.g. [7] and [10])

z(s) = a cn(−
√
λs, k) = a cn(

√
λs, k), k =

√
1− µ

2
(17)

b) The integration of the second case is performed via the hyperbolic functions and
one easily gets

z(s) =
2 sech(s

√
λ)√

λ
· (18)

c) After some preparation the integration in the last case leads also to an expression
in terms of Jacobian elliptic function. For that purpose we have to change the
parameter µ with ν = −µ, which means that the range of the new parameter is
the ν > 1 part of the real line. Besides, it turns out convenient to introduce new
parameters â and ĉ in place of a and c used in (15), i.e.,

â2 =
2(ν + 1)

λ
, ĉ2 =

2(ν − 1)
λ

(19)

so that this time we have to evaluate∫ dz√
(â2 − z2) (z2 − ĉ2)

=
λs

2
· (20)

Integrating it we obtain

z(s) = â dn(−

√
λ(ν + 1)

2
s, k̂) = â dn(

√
λ(ν + 1)

2
s, k̂), k̂ =

√
2

ν + 1
· (21)
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The above results should be completed by the integration of equation (9) in the
appropriate setting and in this way we find respectively the parameterizations:

A) x(s) =
2√
λ
E
(
am

(√
λs, k

)
, k
)
− s, z(s) = a cn(

√
λs, k)

B) x(s) =
2 tanh(

√
λs)√

λ
− s, z(s) =

2 sech(
√
λs)√

λ
(22)

C) x(s) = âE(am(

√
λ(ν + 1)

2
s, k̂), k̂)− νs, z(s) = â dn (

√
λ(ν + 1)

2
s, k̂)

in which E(u, k) and F (u, k) (which will appear later on) denote the incomplete
elliptic integrals of the second respectively first kind depending on the argument
u and modulus k, and am (t, k) denotes the Jacobian amplitude function (cf. [7,
10]).
Actually, the integral (20) can be expressed in a slightly different form and this
gives another curve

C′) x(s) = âE(am(u(s), k̂), k̂)− 2
√

2 cn(u(s), k̂) sn(u(s), k̂)√
λ(ν + 1) dn(u(s), k̂)

− νs

(23)

z(s) =
ĉ

dn(u(s), k̂)
, u(s) =

√
λ(ν + 1)

2
s

which coincides with (22 C) (as it should be) if translated along the X axis at
distance

±
√

2

(√
ν + 1
λ

E(am(K(k̂), k̂), k̂)− νK(k̂)√
λ(ν + 1)

)
where K(k̂) is the complete elliptic integral of the first kind [7, 10].

4. Some Geometrical Remarks

A few comments are in order here. E.g., already Euler had detected nine species of
elastic curves while in Fig. 1 we can see only seven of them. The remaining two,
the straight line and the circle can be added immediately to the list. The first one
is generated by the obvious solution x(s) = s, z(s) ≡ 0 of the governing system
of equations (2) and (3). The circle respectively is the degenerated case of (22 C)
when ν approaches infinity.
The rectangular elastica (second figure from the top in Fig. 1 is obtained when
µ = 0. Gibbons’ [6] beautiful observation is that when this curve is rotated at π/2
it becomes the meridional profile of the Mylar balloon [14].
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Figure 1. The elastic curves produced via formulas (22). In all cases
the parameter λ is fixed, i.e., λ = 4. The first five figures starting from
the top on the left hand side are generated by (22 A) and following
values of µ: 0.5, 0,−0.4,−0.65223 and−0.9. The sixth one represents
(22 B) while (22 C) in conjunction with ν = 1.2 produces the last one.
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Another interesting issue is how the value of µ producing the figure “eight” was
found. To answer it let us make use of the fact that cn(u, k) is periodic function of
its argument u and its period is 4K(k).
Starting from the point A where s = 0 (see Fig. 2a)) the elastic curve crosses for
the first time the positive part of the OX axis for s̃ = K(k)/

√
λ at the point P

which is (2E(k) −K(k))/
√
λ off the origin O (here E(k) denotes the complete

elliptic integral of the second kind). In this setting it is clear that P will coincide
with O provided we have arranged that

2E(k)−K(k) = 0. (24)

This transcendental equation can be easily solved numerically by the modern com-
puter algebra systems like Maple, Mathematicar, Reduce, etc. In particular, the
FindRoot command of Mathematicar produces

k =
√

1− µ
2
≈ 0.908909 (25)

and consequently

µ = 1− 2k2 ≈ −0.65223 := µ̊. (26)

One can ask also the question how one can determine the aspect ratio, i.e.,

η =
hmax

wmax
(27)

where hmax and wmax mean the maximal height, respectively width of the figure
“eight”. According to the first item in (22) hmax = a specified in (16) and therefore
we are left with the task to find wmax. For that purpose we rewrite (9) and (12) in

Figure 2. a) An elastic curve on the way to the figure “eight” shape.
b) Geometry of the upper half of the figure “eight” elastica.
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the form
dx
dz

=
z2 + 2µ/λ√

(a2 − z2) (z2 + c2)
(28)

from which is obvious that for z < a after integration we will obtain a smooth
function x = x(z) describing the figure in the first quadrant. The entire figure can
be built by the respective reflections from X and Z axes (see also Fig. 2b)).
Its maximal deflection xmax from the Z axis is attained at the points where

dx
dz

= 0. (29)

Solving the last equation for z we obtain that the extremum takes place at

z =
√
−2µ
λ
· (30)

Now, we have to determine the respective extremal value xmax = x(
√
−2µ/λ) but

before that we have to integrate (28). Doing this we find

x(z) =
1√
λ

(
2E(arccos

z

a
, k)− F (arccos

z

a
, k)
)

(31)

and inserting (30) inside one finally gets

xmax =
1√
λ

(
2E(arccos

√
− µ

1− µ
, k)− F (arccos

√
− µ

1− µ
, k)
)
. (32)

Now, taking into account that wmax = 2xmax, we are in position to evaluate the
aspect ratio as well, i.e.,

η(µ) =
√

1− µ
√

2(2E(arccos
√
− µ

1−µ ,
√

1−µ
2 )− F (arccos

√
− µ

1−µ ,
√

1−µ
2 ))

(33)

which evaluated at µ = µ̊ produces with five digits precision

η(µ̊) = 1.52408. (34)

Evaluated at µ = 0 corresponding to the rectangular elastica, or what is the same
– the mylar balloon, formula (33) gives

η(0) = 0.834627 (35)

a result which has been obtained in another settings in [14]. Let us notice also that
by its very expression the aspect ratio is scale independent.
Our study of this class of solutions would be incomplete if we did not find the slope
of the tangent to the elastica along the X axis. Fortunately, it is easy to conclude
from (28) and Fig. 2 that

cotφ(µ) = − dx
dz

∣∣∣∣
z=0

= − 2µ
λac

= − µ√
1− µ2

· (36)
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At the origin which corresponds to µ = µ̊ and where φ(µ̊) = α, the above formula
gives cotα = 0.860438 and therefore α ≈ 49.2901◦. By the mirror symmetry
this result tells us that the opening angle ψ of the figure “eight” is approximately
81.4199◦ (see Fig. 2b).

Another interesting geometric quantity which is also of some practical interest [16]
is the area bounded by the elastica curves and the X axis. In Fig. 3 we have
presented various such instances depending on the chosen values of µ.

For the area A of any of the striped regions there we can write

A =
∫
zdx =

∫
z

dx
dz

dz =
∫

z3 + 2µz/λ√
(a2 − z2) (z2 + c2)

dz. (37)

For the solutions of class A) z(s) = a cn(
√
λs, k), the problem with evaluation

of the last integral reduces to the computations of the integrals of the first and the
third powers of the Jacobian elliptic function cn which are tabulated (see [4]) and
we have respectively∫

cn(u, k) du =
1
k

arcsin(k sn(u, k))∫
cn3(u, k) du =

1
2k3

[(2k2 − 1) arcsin(k sn(u, k)) + k sn(u, k) dn(u, k)].

(38)

With the help of the formulas listed above and taking into account the limits of the
integration we find immediately that∫

z dz√
(a2 − z2) (z2 + c2)

= arcsin(k)

∫
z3 dz√

(a2 − z2) (z2 + c2)
=
√

1− µ2

λ
− 2µ

λ
arcsin(k).

(39)

Figure 3. The striped regions present half of the area enclosed by the
respective elastica curve and the X axis.
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These combined results give at the end the amazingly simple formula for the total
area Atot = 2A enclosed by the elastica and the X axis, i.e.,

Atot =
2
√

1− µ2

λ
=

√
1 + µ

1− µ
a2 =

4kk̃
λ

=
k̃

k
a2 (40)

where k̃ is the so called complementary elliptic modulus defined by the equation

k̃2 = 1− k2. (41)

In particular, for the rectangular elastica (the mylar balloon) we have µ = 0, which
implies k = k̃ = 1√

2
and therefore Atot = a2.

5. Mechanical Aspects

Finally, we will add a few comments on the dynamical aspects of the elastica.
Looking at Fig. 4 where θ(s) denotes the angle between the normal vector to the
curve and the Z axis one easily concludes that

ẋ(s) = cos θ(s), ż(s) = − sin θ(s) (42)

and therefore
θ̇(s) = −λz(s). (43)

Differentiating once more the above equation we obtain just the equation of the
mathematical pendulum (with negative string constant)

θ̈(s) = λ sin θ(s) (44)

and in this way we have established the close relationship which exists between
this fundamental mechanical system and the Euler’s elastica.
This situation is depicted graphically in Fig. 1 where on the left hand side are
shown various types of elastica configurations and on the right hand side the cor-
responding pendulum motions. The inflexional elastica corresponds to oscillatory
motion of the pendulum, the single-looped elastica corresponds to the limiting case
when its motion starts close to the position of unstable equilibrium at the top of the

Figure 4. Geometry of the elastic curve in terms of the azimuthal angle θ(s).
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circle and makes just one complete revolution, and the non-inflexional elastica cor-
responds to the revolving pendulum.
In the particular case most studied here when the pendulum furnishes oscillations
corresponding to figure “eight” elastica the bob rises just to angle ψ/2 ≈ 40.71◦

over the horizon. There remains, however the question about the mechanical inter-
pretation of the figure “eight” for the pendulum motion.
It should be mentioned also that another set of explicit formulas describing the
elastica’s shapes can be found in the book by Love [13] who had derived them by
integrating (44) directly.
Let us end with a remark that the Bernoulli-Euler beam equation is still a subject of
real interest in view of its importance for analysis of large-deflection mechanisms
as evidenced in [8, 9, 12] or its potential applications to nanotechnology or textiles
problems [5].
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