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Abstract. Discussed is the problem of the mutual interaction between spinor
and gravitational fields. The special stress is laid on the problem of the proper
choice of the gauge group responsible for the spinorial geometrodynamics.
According to some standard views this is to be the local, i.e., x-dependent,
group SL(2,C), the covering group of the Lorentz group which rules the in-
ternal degrees of freedom of gravitational cotetrad. Our idea is that this group
should be replaced by SU(2, 2), i.e., the covering group of the Lorentz group
in four dimensions. This leads to the idea of Klein-Gordon-Dirac equation
which in a slightly different context was discovered by Barut and coworkers.
The idea seems to explain the strange phenomenon of appearing leptons and
quarks in characteristic, mysterious doublets in the electroweak interaction.

1. Introductory Remarks. Four-Component versus Two-Component
Spinors in Special Relativity

Even now the concept of spinor is still rather mysterious. Let us begin with what is
clean, doubtless and experimentally confirmed. Historically the first thing was the
discovery by G. Uhlenbeck and S. Goudsmit that to understand the spectral lines
of atoms one had to admit the existence of spin — internal angular momentum of
electrons of the surprising magnitude 1/2 in ~-units. The idea seemed so surpris-
ing and speculative that even prominent physicists like Lorentz and Fermi were
strongly if not aggressively against it. Fortunately Ehrenfest and Bohr supported
the hypothesis [15]. And the strongest support was experimental one, from atomic
spectroscopy. The mathematical understanding came later on from group theory.
An essential point is that the group SU(2) may be identified with the universal
covering group of SO(3,R), orthogonal group in three real dimensions, isomor-
phic with the group of rotations around some fixed point in the physical Euclidean
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space. It is projective unitary representations rather than vector ones that is rele-
vant for quantum mechanics. And when studying quantum projective representa-
tions it is natural to start from discussing the universal covering group. There is
no direct nor commonly accepted interpretation of spin in terms of quantized gyro-
scopic degrees of freedom, although in spite of certain current views such an idea
is not a priori meaningless. When relativistic quantum mechanics and field the-
ory emerged, the half-integer internal angular momentum was interpreted in terms
of the complex special linear group SL(2,C) as the universal covering group of
the restricted Lorentz group SO↑(1, 3). On this basis Wigner and Bargmann de-
veloped the systematic theory of relativistic linear wave equations. This theory
was in a sense too general, formally predicting an infinity of particles and fields
which do not seem to exist on the fundamental elementary level. Some new impact
came from Dirac and his attempts of creating relativistic quantum mechanics based
on first-order differential equations. The second-order Klein-Gordon equation did
not seem to be satisfactory as a relativistic quantum-mechanical equation both be-
cause of its incompatibility with Born statistical interpretation (the non-existence
of positively-definite probabilistic density) and because of its predictions incom-
patible with experimental data of atomic spectroscopy. This was the reason that
the Klein-Gordon was rejected by Schrödinger who, by the way, was the first to
formulate it. It turned out that the non-relativistic equation commonly referred to
as Schrödinger equation gave much more satisfactory predictions, especially when
combined phenomenologically with the spin idea into what is now known as two-
component Pauli equation. It is well known that as a consequence of Dirac anal-
ysis the old XIX-th century idea of hypercomplex numbers and Clifford algebras
revived. Namely, if the desired first-order equation

iγµ∂µΨ = mΨ (1)

is to imply the Klein-Gordon equation

gµν∂µ∂νΨ = −m2Ψ, gµν (i∂µ) (i∂µ) Ψ = m2Ψ (2)

where g denotes the specially-relativistic metric tensor of Minkowskian space-time
((2) is just the relativistic energy-momentum for free particles), then the “vector
components” γµ have to satisfy

γµγν + γνγµ = 2gµν (3)

i.e., they must be non-commutative algebraic entities, and certainly not numbers.
Incidentally, this is obvious even from the very form of equation (1), because if γ
is a usual vector, the equation would not be relativistically invariant. So certainly
besides of the index µ, γµ must have certain additional indices and their interplay
may result in the invariance under Poincaré group. The objects γµ commonly
referred to as Dirac matrices are expected to be linear mappings of some linear
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space D into itself, so more rigorously, one should write (3) as

γµγν + γνγµ = 2gµνID (4)

where ID denotes the identity operator in D.
Alternatively, one can use Dirac covectors with components

γµ := gµνγ
ν (5)

satisfying
γµγν + γνγµ = 2gµνID. (6)

The above formulae tell us simply that the scalar quadrats of covectors and vectors
are literally represented as squares of something

(γµpµ)2 = gµνpµpν , (γµxµ)2 = gµνx
µxν (7)

or, more precisely

(γµpµ)2 = gµνpµpνID, (γµxµ)2 = gµνx
µxνID. (8)

On the quantum level, when “momenta” pµ are replaced by operators i∂µ, this is
the “square-rootization” of the d’Alembert operator

(γµi∂µ)2 = ID� = −IDgµν (i∂µ) (i∂ν) (9)

(γµ∂µ)2 = ID� = IDg
µν∂µ∂ν . (10)

To avoid the crowd of characters, in literature one usually omits the symbol ID,
although literally incorrect, this does not lead to misunderstandings.
This linear realisation in terms of linear mappings γµ, γµ ∈ L (D) ' D ⊗ D∗ is
necessary in physics, both on the fundamental and computational level. Neverthe-
less, from the more abstract and formal point of view, the expressions above were
a physical rediscovery (by Dirac) of Clifford algebras. This concept is certainly
more general than physical problems appearing in four-dimensional Minkowski
space-time or three-dimensional Euclidean space.
Let (V, g) be a pseudo-Euclidean space, so V is a finite-dimensional vector space
and g ∈ V ∗⊗V ∗ is a symmetric non-degenerate metric tensor in V . It needs not be
definite; it is positive in the three-dimensional Euclidean space but has the normal-
hyperbolic signature (+,−,−,−) (or (−,+,+,+)) in Minkowskian space-time
of special relativity. Obviously, in those examples V is a linear space of translation
vectors, respectively in space and space-time. Let T0(V ) denote the associative
algebra of all contravariant tensors in V

T0(V ) = (R⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · ) (11)

i.e., the set of infinite sequences of contravariant tensors of all possible orders
with the obvious multiplication rule. Although it is literally incorrect, nevertheless



Search for the Geometrodynamical Gauge Group. Hypotheses and Some Results 69

technically convenient to write those sequences as formal sums:

(c, v, t, s, . . .) = c+ v + t+ s+ · · · . (12)

This is an abbreviation for

(c, 0, 0, 0, . . .) + (0, v, 0, 0, . . .) + (0, 0, t, 0, . . .) + (0, 0, 0, s, . . .) + · · · (13)

where c ∈ R, v ∈ V , t ∈ V ⊗ V , s ∈ V ⊗ V ⊗ V , etc. The notation (12) together
with the reduction procedure enables one to perform the tensor multiplication in
T0(V ) in a simple, automatic way.
Let us take the elements of T0(V ) of the form

u⊗ v + v ⊗ u− 2g(u, v) (14)

or, more precisely,

(−2g(u, v), 0, u⊗ v + v ⊗ u, 0, . . .) (15)

where the vectors u, v run over all of the space V .
Let J (V, g) ⊂ T0(V ) denote the ideal of the associative algebra T0(V ), generated
by elements of the form (15). Both T0(V ) and J (V, g) are infinite-dimensional,
however the quotient space

Cl(V, g) := T0(V )/J (V, g)

has a finite dimension. This is just the Clifford algebra of (V, g). The associative
product in Cl(V, g) is induced from that in T0(V ) as usual in the quotient space of
an associative algebra with respect to its ideal. If (. . . , ei, . . .) is a basis in V , then
the corresponding induced basis in T0(V ) consists of the elements

(1, ei, ei ⊗ ej , ei ⊗ ej ⊗ ek, . . .) (16)

where the labels run over all possible values i = 1, . . . ,dimV . The identification
of ei ⊗ ej + ej ⊗ ei with 2gij , more precisely, the identification of

(−2gij , 0, ei ⊗ ej + ej ⊗ ei, 0, . . .) (17)

with the null element when the quotient procedure is performed, tells us that the
basis of Cl(V, g) consists of elements which for brevity will be denoted as follows:

1, ei, eiej , eiejek, . . . , e1e2 · · · en, i < j, i < j < k, . . . . (18)

They are canonical projections (under the quotient procedure) of

(1, 0, 0, 0, . . .) , (0, ei, 0, 0, . . .) , (0, 0, ei ⊗ ej , 0, . . .)
(0, 0, 0, ei ⊗ ej ⊗ ek, . . .) , . . . , (0, . . . , 0, e1 ⊗ e2 ⊗ · · · ⊗ en) .

(19)

The quotient-projections of other elements of (16), in particular, higher-order ones,
may be expressed through (19), for example, if the basis e is g-orthogonal

ejei = −eiej + 2gij , e1e2 · · · ene1 = (−1)n−1g11e2 · · · en. (20)
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Orthogonality means obviously

gij = g(ei, ej) = 0, if i 6= j. (21)

Usually, although not necessarily, we use orthonormal bases when besides of (21)
the following holds

gii = g(ei, ei) = ±1. (22)
We are dealing here only with real linear spaces (the ones over R) when the concept
of signature does exist and the number of diagonal ± signs is well defined and
invariant.
In linear realisations, when the elements of Cl(V, g) are isomorphically represented
by linear mappings of some linear complex space D into itself, the representants
of basic elements ei will be denoted by Dirac symbols γi.
The elements of Cl(V, g) for which the multiplicative inverse exists form the group
GCl(V, g) under the associative product which is referred to as Clifford group.
This group acts in Cl(V, g) through the similarity transformations

A ∈ GCl(V, g) : Cl(V, g) 3 X 7→ AXA−1. (23)

Let us distinguish the subgroup Õ(V, g) ⊂ GCl(V, g) which acting in this way
does preserve the subspace V of Cl(V, g), or, to be more precise, the subspace
(0, V, 0, . . . , 0)

A ∈ Õ(V, g) : A(0, V, 0, . . . , 0)A−1 = (0, V, 0, . . . , 0). (24)

This action induces the action of the pseudo-orthogonal group O(V, g) on V

A(0, v, 0, . . . , 0)A−1 = (0, L[A]v, 0, . . . , 0) (25)

where, obviously, the assignment

A ∈ Õ(V, g) 7→ L[A] ∈ O(V, g) (26)

is a group homomorphism. Obviously, it is seen that A, −A give rise to the same
pseudo-orthogonal mappings

L[−A] = L[A]. (27)

Moreover, Õ(V, g) is the universal covering group of O(V, g). In the special case
of three-dimensional Euclidean space or four-dimensional Minkowski space, the
2 : 1 universal covering groups of the connected components of unity SO(3,R),
SO↑(1, 3) may be identified respectively with SU(2) and SL(2,R), according to
the well-known analytical procedure.
Linear realisation of all those objects is necessary for physical purposes. There is
an infinity of possible dimensions of the space D of Dirac objects (Dirac spinors).
In physics the special stress is laid on irreducible minimal realisation. It is well
known that if the real dimension of V equals n = 2m, m being a natural number,
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then the lowest possible dimension of D equals 2m = 2n/2 and this is the com-
plex dimension (D is a linear space over the field C). As usual in fundamental
physics, field equations are self-adjoint, i.e., derivable from variational principles.
To construct Lagrangians for the D-valued Dirac field, we must have at disposal
some sesquilinear Hermitian form G on D, G ∈ D∗ ⊗ D, such that the “Dirac
matrices” γ ∈ L(D) ' D ⊗ D∗ are Hermitian with respect to G. In any case, it
is so if we wish to construct Lagrangian for the Dirac equation. Some comments
are necessary here, because usually the literature devoted to the subject is either
very mathematically abstract, one can say esoteric, or, much more often, purely
analytical and full of misunderstandings. Those misunderstandings come from the
analytical misuse of the matrix concept, without any attention paid to the essential
problem, what are geometric objects represented by matrices. Let us stress a few
important points. The so called “Dirac matrices” provide an analytical description
of some mixed tensors, i.e., linear mappings in D, γµ ∈ L(D) ' D ⊗D∗, so their
analytical representation reads γµrs in which the indices r, s refer to the space D.
The above-mentioned Hermitian form Γ ∈ D∗ ⊗ D is a twice covariant tensor in
D, “complex in the first index”. The corresponding analytical expression is Gr̄s.
Evaluation of G on the pair of objects Ψ, ϕ ∈ D is analytically given by

G(Ψ, ϕ) = Gr̄sΨ̄r̄ϕs = G(ϕ,Ψ). (28)

And similarly, the action of γµ is analytically given by

(γµΨ)r = γµrsΨs. (29)

The inverse form of G, G−1 ∈ D ⊗ D is a twice contravariant tensor “complex in
the second index”. To avoid the crowd of symbols, in analytical representation we
omit the symbol of inverting and use simply the analytical expression Grs̄, where

Gr̄zG
zs̄ = δr̄

s̄, Grz̄Gz̄s = δrs. (30)

The corresponding “deltas” represent, respectively, identity mappings of D∗ and
D. The choice of G must be compatible with γµ in the sense, that “gammas” must
be Hermitian with respect to G. Namely, let us introduce sesquilinear forms Γµ,
Γµ on D, Γµ ∈ D∗ ⊗D, Γµ ∈ D∗ ⊗D by the G-shifting of spinor indices

Γµr̄s = Gr̄zγ
µz
s, Γµr̄s = gµνΓν r̄s = Gr̄zγ

z
sµ. (31)

It might be perhaps suggestive to use the symbols γµr̄s, γµr̄s, however, this would
be also confusing. The sesquilinear forms Γµ, Γµ must be Hermitian,

Γµ(Ψ, ϕ) = Γµ(ϕ,Ψ), Γµ(Ψ, ϕ) = Γµ(ϕ,Ψ) (32)

i.e., analytically,
Γµr̄s = Γµs̄r, Γµr̄s = Γµs̄r (33)
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where, as usual, the coefficients of Γµ are defined by

Γµ(Ψ, ϕ) = Γµr̄sΨ
r̄
ϕs. (34)

When one deals with Minkowski space of signature (+,−,−,−) or (−,+,+,+),
G must have the neutral signature (+,+,−,−).
Let us notice that G gives rise to the antilinear mappings

D 3 Ψ 7→ Ψ̃ ∈ D∗ (35)

where
Ψ̃r := Ψs̄

Gs̄r. (36)

This is the so-called Dirac conjugation (the “Dirac bar operation”).
Let us stress that the particular matrix realisation of γµ and G is a matter of conve-
nience and it is only their mutual relationships system quoted above that matters. In
commonly used representation the matrix [Gr̄s] coincides numerically with

[
γ0r

s
]
.

This is at least one of infinitely many representations, perhaps computationally the
most convenient one. If the machine producing Ψ̃r from Ψr was essentially given
by γ0, this would be a drastic violation of the relativistic invariance.
Everything formulated according to the Clifford paradigm may be done in arbi-
trary dimension. But our physical space-time is just four-dimensional. And the
higher-dimensional Universes in the Kaluza style are still rather hypothetical what
concerns their fundamental existence. And some special features of dimension
four lead to another paradigm. Namely, the Hermitian geometry of the Dirac space
has the neutral signature (+,+,−,−), so the group of pseudounitary transforma-
tions U(D, G) ' U(2, 2) preserving G seems to be something fundamental. But
its special subgroup SU(D, G) ' SU(2, 2) consisting of transformations with de-
terminants equal to unity is the universal covering group of the 15-dimensional
conformal group CO(V, g) ' CO(1, 3) of Minkowskian space. Perhaps it is just
here where another paradigm should be sought? In other dimensions this coinci-
dence of the group of symmetries of Hermitian scalar product of spinors and the
space-time conformal group breaks down. But our space-time at least in certain
its aspects is just four-dimensional. So it is difficult to decide a priori which para-
digm should be accepted. And in a sense they seem to suggest different dynamical
models.
There is also another point of the special dimension four, which has to do with
certain ideas formulated by Weizsäcker, Finkelstein and Penrose. They were also
a basis towards reconciliation of quanta and gravitation (general relativity). The
two theories seem to be historically incompatible. Everything has to do with the
Weizsäcker idea of “urs”.
The starting point is that every physical experiment may be finally decomposed into
a sequence of yes-no experiments, i.e., in a sense the Universe is something like
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the giant computer device. So in the beginning there is a dichotomy – two-element
set Z2, one can consider it as the {0, 1}-set, non-excited and excited (active). But
we know that physical phenomena are ruled by quantum mechanics with its super-
position principle and wave-particle dualism. Therefore, the next step is to take
the linear shell of Z2 over the complex field C, i.e., the complex linear space C2.
And it is also known that usually there is no physically fixed basis, so instead one
should start with the C-two-dimensional complex linear space W . As yet we do
not assume any fixed geometric structure in W .
Let us make a small digression concerning the complex linear geometry. Any com-
plex linear space W of arbitrary dimension n gives rise to the natural quadruple of
mutually related linear complex spaces. Those are: W itself, its complex conjugate
W , the dual W ∗ (we mean dual over C) and the antidual W ∗ = W

∗. Obviously,
as in every linear space, W ∗ is the space of linear (over C) functionals on W .
The antidual W ∗ = W

∗ consists of antilinear (half-linear) functions on W . Its
elements may be simply defined as argument-wise complex conjugates of linear
functions, so f ∈ W ∗ operates on W according to f(u) := f(u). The assignment
W ∗ 3 f 7→ f ∈W ∗ is an antilinear (half-linear) isomorphism of W ∗ onto W ∗. In
finite dimension, by analogy to the canonical isomorphism between W and W ∗∗,
we can defineW as the space of antilinear functions onW ∗. So, there exists an an-
tilinear isomorphism of W onto W , W 3 u 7→ u ∈W , such that u as a functional
on W ∗ acts as follows: u(f) := f(u). If (. . . , ei, . . .) is some basis in W , then the
corresponding bases in W ∗, W , W ∗ will be denoted respectively by (. . . , ei, . . .),
(. . . , eī, . . .) and (. . . , eī, . . .). It must be stressed that there is no canonical com-
plex conjugate of vectors in a given linear space W and that the antilinear complex
conjugate operation acts between different linear spaces, e.g., W and W are W ∗

and W ∗. The complex conjugate of vectors in a given linear space is possible only
when W itself is endowed with an additional structure which is neither assumed
here nor would be physically interpretable. Of course one could remain on the
level of C, but then the crowd of apparently natural but neither mathematically
nor physically motivated objects like

∑n
a=1 u

ava appear. No such artefacts when
working in an abstract W .
The next step, both mathematically and physically is the tower of tensor byproducts
over W . The most important objects are hermitian forms on W and W ∗. They are
respectively sesquilinear forms on W and W ∗

p : W ×W → C, p ∈W ∗ ⊗W ∗

and
x : W ∗ ×W ∗ → C, x ∈W ⊗W

satisfying respectively the hermiticity conditions

pāb = pb̄a, xab̄ = xbā (37)
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i.e., more geometrically

p(w1, w2) = p(w2, w1), x(f1, f2) = x(f2, f1). (38)

These four-dimensional spaces, denoted respectively as

Herm
(
W
∗ ⊗W ∗

)
, Herm

(
W ⊗W

)
are evidently dual in a canonical form to each other in the sense of pairing

〈p, x〉 = Tr(p, x) = pābx
bā = Tr(xp) ∈ C. (39)

The natural bases of W ⊗W , W ∗ ⊗W ∗, corresponding to some choice of basis
(e1, . . . , en) in W is obviously, the system of

ei ⊗ ej̄ , e ī ⊗ ej .

The subspaces Herm
(
W
∗ ⊗W ∗

)
and Herm

(
W ⊗W

)
are spanned on some ba-

sic Hermitian forms on W and W ∗. The most convenient possibility is to choose
as coefficients some numerical Hermitian matrices. The traditional historical con-
vention in field theory of fundamental two-component spinors are Pauli matrices
and the corresponding bases in Herm

(
W
∗ ⊗W ∗

)
, Herm

(
W ⊗W

)
σ[e]A =

1√
2
σAābe

ā ⊗ eb, σ[e]A =
1√
2
σA

bāeb ⊗ eā. (40)

Some remarks are necessary here. Obviously, we mean here the “relativistic” quad-
ruplet of sigma-matrices, so σ0 = σ0 = I2 is the 2 × 2 identity matrix. The re-
maining ones, σR, R = 1, 2, 3, are a usual triplet of Pauli matrices. But, of course,
unlike in the non-relativistic Pauli theory of spinning electron, they are not the
spin operators (multiplied by 2/~) acting in the two-dimensional internal Hilbert
space. They are Hermitian forms, so twice covariant and twice contravariant (once
complex), certainly they are not Hermitian operators acting in a two-dimensional
Hilbert space. Incidentally, it is very essential that in the internal spaces of Weyl
fields W , W ∗ there is no fixed Hermitian scalar product with respect to which sig-
mas would be linear Hermitian operators, i.e., mixed tensors. This has to do with
the structure of Weyl equations, their self-adjoint structure and their noninvariance
under spatial reflections.
A very important point is the status of the internal “relativistic” indexA. The lower
and upper cases of A have nothing to do with the metrical shifting of indices with
the help of some internal Minkowski metric ηAB . The point is important because
the alternative linear bases in Herm

(
W
∗ ⊗W ∗

)
, Herm

(
W ⊗W

)
σ̃[e]A := ηABσ[e]B, σ̃[e]A := ηABσ[e]B (41)
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are also used for certain purposes. The level of writing the capital indices in
(40) and separately in (41) has only to do with the pairs of dual bases. Namely,
Herm

(
W
∗ ⊗W ∗

)
and Herm

(
W ⊗W

)
are mutually dual in the canonical way

and the corresponding bases are also dual〈
σ[e]A, σ[e]B

〉
=

1
2
σ[e]Aābσ[e]Bbā =

1
2

Tr
(
σAσB

)
= δAB (42)

independently on the choice of the base e. When this choice is fixed, we do not
distinguish graphically between σ[e]A, σ[e]A and σA, σA. And similarly for σ̃[e]A,
σ̃[e]A. But unlike this〈

σ̃[e]A, σ̃[e]B
〉

= 2ηAB, 〈σ̃[e]A, σ̃[e]B〉 = 2ηAB. (43)

Numerically the matrices σA, σA coincide and equal the “relativistic” quadruplet
of “sigmas”. Similarly, σ̃A coincide with σ̃A and equal the quadruplet of “sigmas”
with relativistically η-corrected signs.
We were dealing here (and are so all over in analytical manipulations of spinors)
with few of infinity possibility of mistakes appearing when one does not distinguish
between bi(sesqui)linear forms, linear mappings and their matrices.
Let us follow the idea of two-component spinors as something primary and its
impact on Dirac theory and its conformal modifications.
First, let us remind that if dimW = 2, then the subspaces of Hermitian tensors
H(W ) ⊂ W ⊗W , H(W )∗ ⊂ W

∗ ⊗W ∗ are endowed with a natural conformal-
Minkowskian geometry, i.e., Minkowski tensor defined up to a constant multiplier.
Indeed, the peculiarity of dimension two is that for any x ∈ H(W ), p ∈ H(W )∗,
the determinants

det
[
xbā
]
, det [pāb] (44)

are quadratic forms and one can easily see they have normal-hyperbolic signature.
It is still a mystery if there is something deep in this fact and the underlying rea-
soning or this is a strange accident. There is an idea that starting from this one
can reconciliate quanta and gravitation (more generally – quanta and gravitation).
As both indices have the same valence, the determinants are not scalars in H(W ),
but respectively scalar densities of weight −2 and 2. Changing the basis in W
multiplies them by the appropriate power of the transformation matrix.
When some among infinity of conformally equivalent metrics η ∈ H(W )∗ ⊗
H(W )∗ is fixed once for all, i.e., the standard of scale is chosen, then we can
always choose the basis (e1, e2) in W in such a way that, e.g.,

[ηAB] = diag (1,−1,−1,−1) (45)

i.e.,
η = ηABσ[e]A ⊗ σ[e]B (46)
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the bases σ[e]A and σ[e]A, A = 0, 1, 2, 3, are η-orthonormal.
Another fixation of scale is based on the choice of symplectic structure ε on W .
Being two-dimensional, it has only one such up to a complex multiplier. So, in a
fixed basis (e1, e2) we can take

[εab] = [εāb̄] = −
[
εab
]

= −
[
εāb̄
]

=
[

0 −1
1 0

]
. (47)

And then for x = xAσ[e]A, y = yAσ[e]A

η(x, y) = ηABx
AyB, ηAB =

1
2
σA

bāσB
dc̄ε[e]bdε[e]āc̄. (48)

Obviously, the unimodular complex multiplier exp(iϕ), ϕ ∈ R, does not influ-
ence η and it is only the absolute value of the multiplier that modifies the scale.
Obviously, the inverse objects in (47) are meant in the usual sense

ε[e]acε[e]cb = δab, ε[e]āc̄ε[e]c̄b̄ = δāb̄. (49)

Another similar, but in a sense intrinsic object in W is the tensor density of weight
one Eab defined by the condition that in all possible bases in W

[Eab] =
[

0 −1
1 0

]
. (50)

Obviously the inverse Eab given in all coordinates by[
Eab

]
=
[

0 1
−1 0

]
, EacEcb = δab (51)

is the tensor density of weight minus one. Those Ricci objects enable one to con-
struct in H(W ) the symmetric tensor density of weight two, using just the second
of the formulae (48)

NAB :=
1
2
σA

bāσB
dc̄EbdEāc̄

but it is hard to decide if some physical meaning may attributed to this object and
to its contravariant inverse of weight minus two.
No doubt, the idea of deriving specially-relativistic geometry from two-component
complex objects (spinors), especially in the context of Weizsäcker “urs” is inter-
esting, although not yet proven (if provable at all) in a very convincing way, just
one of hypothetical paradigms. It is very interesting that the non-definite Hermit-
ian tensors, i.e., elements of H(W ), H(W ∗) ' H(W )∗ are space-like in the sense
of above Minkowski metric η, degenerate ones correspond to the “light cones” of
isotropic vectors and covectors, whereas the definite ones are time-like.
The positively definite ones may be assumed to define future, whereas the negative
ones are by definition past-oriented. The degenerate forms, i.e., light-cone ele-
ments are future- or past oriented depending on whether they adhere respectively
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to the bulk of positively- or negatively-definite hermitian tensors. There is nothing
like such a basis for defining canonically future and past when Minkowskian space
is primary one, not derived as a byproduct of the Weyl space W .
There is another interesting link between ideas of two-dimensional “quantum am-
plitudes” and “specially-relativistic” geometry. Namely, W as a two-dimensional
linear space over C is completely amorphous. No particular geometric object
is fixed in W as an absolute one; in particular, none of infinity of Hermitian
forms is distinguished in it. So, there is no fixed positive scalar product in W ,
it is not a Hilbert space and there is no probabilistic interpretation in the usual
sense. However, if we once fix some positive sesquilinear form κ ∈ H(W ∗) =
Herm

(
W
∗ ⊗W ∗

)
, i.e., some positive scalar product, then (W,κ) becomes the

Hilbert space admitting a true quantum-mechanical interpretation. Let us remind
the idea, controversial but interesting one, expressed may years ago in the book
by Marshak and Sudarshan [7] that the quantum-mechanical formalism becomes
operationally interpretable always with respect to some reference frame. And as
said above, any positively definite, thus time-like and future oriented element κ of
H(W ∗) is a reference frame in the “space time” (H(W ),R+η).
Let us continue with byproducts of the Weyl paradigm of two-component spinors.
The target space W of Weyl spinor fields is completely amorphous as no absolute
objects are fixed in it. Unlike this, its byproducts like H(W ∗), H(W ), and the
space of Dirac bispinors

D := W ×W ∗ (52)

are full of byproducts structures. By analogy to linear spacesW ×W ∗ which carry
canonical symplectic structures (and in the real W case – the neutral-signature
pseudo-Euclidean structures), any complex space of the form W × W ∗, it does
not matter of what dimension, is endowed with two natural Hermitian structures of
neutral signature. Let us quote them

G ((w1, f1) , (w2, f2)) := f1(w2) + f2(w1) (53)

iF ((w1, f1) , (w2, f2)) := i
(
f1(w2)− f2(w1)

)
. (54)

The sesquilinear forms G, F are respectively Hermitian and anti-Hermitian

G (Ψ1,Ψ2) = G (Ψ2,Ψ1), F (Ψ1,Ψ2) = −F (Ψ2,Ψ1). (55)

If we use adapted coordinates in the physical dimension four, we obtain

[Gr̄s] =
[

0 I2

I2 0

]
, [Fr̄s] =

[
0 −I2

I2 0

]
(56)

where I2 denotes the 2× 2 identity matrix, 0 is the zero matrix.
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IfG is interpreted as the bispinor scalar product, then theG-raising of the bar-index
of F leads to that is usually interpreted as the γ5-Dirac “matrix”

γ5 = −γ0γ1γ2γ3 = i
[
I2 0
0 −I2

]
. (57)

But as yet the Dirac matrices were not introduced in any particular analytical rep-
resentation, in particular, in the one compatible with (56) and (57). From the point
of view of the Weyl paradigm of two-component spinors as primary entities, when
the Minkowskian target metric ηAB is fixed in its particular standard form, the most
natural is the Weyl-van-der Waerden-Infeld representation

γA =

[
0 σ̃A

σA 0

]
. (58)

More precisely, this analytical matrix representation is to be understood in such a
way that γA are linear mappings from D = W ×W ∗ with matrices[

γArs
]

=

[
0 σ̃Aab̄

σAāb 0

]
(59)

where the action on bispinors [Ψr]T = [ua, vā]
T is analytically meant as follows[

0 σ̃ab̄

σāb 0

] [
ub

vb̄

]
=

[
σ̃ab̄vb̄
σābu

b

]
. (60)

Obviously, the summation convention is used here and the first Latin indices run
over the range (1, 2), whereas the bispinor ones have the range (1, 2, 3, 4).
Roughly speaking, the Weyl two-component spinors (W ) are transformed into
anti-Weyl ones

(
W
∗) and conversely. It is clear that the anticommutation rules (4)

and the Hermitian compatibility conditions (31), (33) are satisfied. This bispinor
representation based on Weyl spinors is particularly suggestive and is very conve-
nient when describing the action of improper Lorentz group. For example, spatial
rotations are not only very simple in analytical sense, but roughly speaking they
consist in a sense in the mutual interchanging of weyl and anti-Weyl spinors. As is
well-known, the particular matrix realisation [γrs], [Gr̄s̄] does not matter. It is only
the system of algebraic relationships between them, that is essential. Nevertheless,
for historical reasons let us mention also Dirac representation. We have then

γ0
Dir =

[
I2 0
0 −I2

]
=
[
σ0 0
0 −σ0

]
, γRDir =

[
0 σR

−σR 0

]
(61)

[Gr̄s]Dir =
[
I2 0
0 −I2

]
, γ5

Dir = i
[

0 I2

I2 0

]
. (62)
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Analytically the both representation are interrelated via the change of coordinates
described by the matrix

B = B−1 = BT = B+ =
1√
2

[
I2 I2

I2 −I2

]
. (63)

The last chain of equalities implies that “accidentally” γArs and Gr̄s transform
according to the same rules in spite of their different geometric nature. Again the
accident not to be repeated generally! Spinor representation based on the space W
is geometrically more natural but there are physical problems in which Dirac repre-
sentation is more convenient. For example, nonrelativistic approximation is more
visible then; one obtains the two-component Pauli equation for spinning electron
almost automatically.
Very important geometric problems appear when one injects Lie groups and their
Lie algebras of mappings acting in W into L(D), the set of linear mappings of D
into itself and into L(H), L(H∗) ' L(H)∗-real spaces of Hermitian tensors on H.
Any A ∈ GL(W ) gives rise to U(A) ⊂ GL(D), namely

U(A) := A×A∗−1 (64)

acting as follows on bispinors

(U(A)Ψ) = U(A)
[
u
v

]
=

[
Au

v ◦A−1

]
=
[
u′

v′

]
(65)

where, analytically

u′a = (Au)a = Aabu
b, v′ā =

(
v ◦A−1

)
ā

= vb̄A
−1b̄

ā. (66)

This is evidently a faithful representation (injection) of GL(W ) into GL(D). And
moreover, this is an injection into the pseudounitary subgroup U(D, G) ⊂ GL(D),
isomorphic (non-canonically) with U(2, 2) ⊂ GL(4,C), namely the subgroup of
GL(D) preserving the scalar product G

Gr̄sU(A)r̄ z̄U(A)sw = Gz̄w (67)

or briefly
U(A)∗G = G. (68)

As mentioned, the unimodular subgroup SU(D, G) isomorphic (non-canonically)
with SU(2, 2) is isomorphic with something very important, namely, with the uni-
versal covering group of the full conformal group SO↑(H(W )) isomorphic (non-
canonically) with the Lorentz group SO↑(1, 3). So we again return to the funda-
mental question of our four-dimensional conformal paradigm: Perhaps the Clifford
structure is something accidental which in the special case of the four-dimensional
space time is related to the conformal group, but perhaps the latter one is just the
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proper physical way? The deep physical meaning of the Minkowskian confor-
mal group seems to work in support of this hypothesis. This is the group which
preserves the set of uniformly accelerated motion (the uniform inertial motions
form the very special subset of this set. This group preserves the light cones. It
is semisimple and finite 15-dimensional. Moreover, it is the smallest semisimple
group containing the (non-semisimple) Poincaré group and every larger diffeomor-
phism group of this property must be infinite-dimensional. Perhaps the admitting
of U(D, G) instead its subgroup given by (64), (66) is justified as an extension of
the group of extended point transformations in cotangent bundles to the group of
canonical transformations as there is a complete analogy.
The one-parameter subgroups of GL(W ) may be (at least locally) written in expo-
nential form

A(τ) = exp(aτ), a ∈ L(W ) ' gl(W ). (69)

They give rise to one-parameter subgroups of (64), (66)

U (A(τ)) = exp (u(a)τ) (70)

where the generators u(a) act on D as the following elements of L(D)[
u
v

]
7→
[
u′

v′

]
, u′b = abcu

c, v′b̄ = −vc̄a c̄
b̄. (71)

Let us notice that when the transformations A are restricted to the proper linear
group SL(W ), so that

Tr a = 0 (72)

then the transformations (66) acting on the u- and v-components are exactly what
in the standard literature is referred to as the D(1/2,0) and D(0,1/2) representa-
tions of SL(W ) ' SL(2,C), i.e., the corresponding two-valued representations
of SO(H, η) ' SO↑(1, 3). Then the total representation (66) is reducible one,
equivalent to

D(1/2,0) ⊗D(0,1/2) (73)

unless we admit spatial reflection which destroy the reducibility. Those reflec-
tions are always meant with respect to some reference frames in H(W ), H(W ∗) '
H(W )∗, i.e., with respect to some positively definite Hermitian form κāb or its
inverse κbā

κācκ
cb̄ = δā

b̄, κac̄κc̄b = δab. (74)

It is assumed to be η-normalised to unity, i.e., if

κab̄ = κA
1√
2
σA

ab̄, κāb = κA
1√
2
σAāb (75)

ηABκ
AκB = 1, ηABκAκB = 1 (76)
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then the corresponding spatial reflection interchanging u, v is analytically given by

P

[
u
v

]
=

[
0 κab̄

κāb 0

] [
ub

vb̄

]
=

[
κab̄vb̄
κābu

b

]
. (77)

The natural question: if once to admit the mixing ofW ,W ∗ to introduce the spatial
reflection, then why not to admit its total pseudounitary mixing by U(D, G) '
U(2, 2) – the covering group of conformals!
The next problem is the relationship between linear mappings in W and those
in conformal-Minkowski spaces H(W ), H(W ∗) ' H(W )∗. It is clear that any
A ∈ GL(W ) acts on Hermitian tensors according to the rulesA∗,A∗. Analytically

(A∗x)ab̄ = AacA
b̄
d̄x

cd̄, (A∗x)āb = pc̄dA
−1c̄

āA
−1d

b. (78)

Obviously, this transformation preserves Hermicity, i.e., H(W ) is mapped onto
H(W ), H(W ∗) ' H(W )∗ is also mapped onto itself. And it is again clear that
replacing A by exp(iϕ)A, ϕ ∈ R, we do not modify the transformation rule for
Hermitian tensors. If we use the “sigma-basis” in H(W ), H(W ∗), then the matrix[

(AH)A B

]
, (AH)σL = A∗σL = σK (AH)K L (79)

is given by

(AH)K L =
1
2
σKb̄aA

a
cA

b̄
d̄σL

cd̄ (80)

and of course in the second formula of (78) is based on the matrix contragradient
to (80)

A∗σ
L =

(
A−1

H

)L
Kσ

K . (81)

It is explicitly seen that A, −A, or more generally, exp(iϕ)A, ϕ ∈ R, lead to the
same transformation rule AH in H. If A-s are restricted to SL(W ) ' SL(2,C),
the assignment GL(W ) 3 A 7→ AH ∈ GL(H) is a universal 2 : 1 covering of the
restricted Lorentz group. Obviously, for any unimodular transformation, i.e., for
any element of the subgroup

UL(W ) := {A ∈ GL(W ) ; |detA| = 1} (82)

the corresponding A∗ does preserve separately any of the natural conformally in-
variant metrics on H(W ). But obviously, any real multiplier at A different from
one does violate this isometry properly and the corresponding (AH) becomes the
Weyl transformation of H, multiplying any of possible η-s by the real dilatation
factor

η 7→ |detA|−2 η (83)
more precisely

ηKL
(
A−1

H

)K
M

(
A−1

H

)L
N = |detA|−2 ηMN (84)
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for any of mutually proportional η. This agrees with the mentioned nature of η as a
tensor Weyl density of weight two rather than tensor. And similarly ε behaves like
the skew-symmetric tensor density of weight one in W .
Let us now do some comments concerning the action of A ∈ GL(W ) through
U(A) ∈ U(D, G) ⊂ GL(D). Transformations U(A) act as similarities on the
associative algebra L(D). In particular, they transform “Dirac matrices” as follows

γK 7→ U(A)γKU(A)−1. (85)

According to (67), the bispinor scalar product G is invariant under the action of
pseudounitary group. However, if | detA| 6= 1, the similarities (85) do not preserve
the Clifford anticommutation rules, because the metric η is not conserved then.
Instead, Clifford rules are then transformed into ones with the modified metric (83).
The point is that (58) are explicitly built of η. Therefore, the conformal paradigm is
not compatible with the Clifford one, and to reconciliate them, one would have to
start with introducing additional dynamical variable, namely, the one-dimensional
scalar factor in η and, henceforth, in σ̃A and γA. Then the resulting scheme would
become scale-free, i.e., invariant under the Weyl group, although still not under the
total conformal group or its covering SU(D, G) ' SU(2, 2).
For the sake of further developments, let us complete those comments by remarks
in the spirit of (69)–(71) in application to (79)–(80). Again, for any a ∈ L(W ) '
gl(W ) we shall consider the one-parameter group

{A(τ) = exp(aτ) ∈ GL(W ) ; τ ∈ R} (86)

and the corresponding induced action on H-spaces, which in “sigma-basis” is given
by (80)

(AH) (τ)KL =
1
2
σKb̄e exp(aτ)ec exp(aτ)b̄d̄σL

cd̄. (87)

By analogy to (69)–(71) let us represent it as follows

AH(τ) = exp
(
α(H)τ

)
. (88)

After some calculations one can show that

α(H)
K
L =

1
2
σKb̄ea

e
cσL

cb̄ +
1
2
σKb̄ea

b̄
c̄σL

ec̄ (89)

or more precisely

α(H) = Re Tr
(
σKaσL

)
. (90)

As expected, there is a direct relationship between traces, i.e., generators of dilata-
tions

Trα(H) = 4Re Tr (a) . (91)



Search for the Geometrodynamical Gauge Group. Hypotheses and Some Results 83

The inverse formula of (90) is not unique, because, obviously, the purely imaginary
part of the trace of a does not contribute to anything in geometry of H and with a
given α(H) it is completely arbitrary

aef =
1
4

(
αK(H)LσK

ec̄σLc̄f −
1
2
αK(H)Kδ

e
f

)
+

i
2

Im (acc) δef (92)

the last term, as mentioned, is completely arbitrary and generates the phase trans-
formations:

w 7→ exp(iϕ)w, ϕ ∈ R. (93)

Many misunderstandings result when one uses without a sufficient care the ana-
lytical language, identifying simply the target spaces of Dirac and Weyl spinors
respectively with C4 or C2 (some artefact structure of those spaces). Nevertheless,
this language is commonly used (C4 and C2 are identified with some standard fi-
bres of the corresponding bundles). So, to finish with, let us quote some popular
analytical formulae. For any a ∈ gl(2,C) ' L(2,C) the corresponding injections
into pseudounitary Lie algebra u(4, G) are given by

u(a) =
[
a 0
0 −a+

]
, u(a) =

1
2

[
a− a+ a+ a+

a+ a+ a− a+

]
(94)

respectively in the van der Waerden-Infeld-Weyl spinor representation and Dirac
representation.
The covering projection P : SL(2,C)→ SO↑(1, 3) and the corresponding isomor-
phism p : SL(2,C)′ → so(1, 3) are respectively given by

U(A)γKU(A)−1 = γLP (A)LK , [u(a), γK ] = γLp(a)LK (95)

AσKA
+ = σLA

L
K , aσK + σKa

+ = σLp(a)LK (96)

where also

P (A)LK =
1
2

Tr
(
σLAσKA

+
)

=
1
4

Tr
(
γLU(A)γKU(A)−1

)
(97)

p(a)LK =
1
2

Tr
(
σLaσK

)
+

1
2

Tr
(
σKa

+σL
)

=
1
2

Tr
(
γLu(a)γK

)
(98)

and respectively, in the spinor Weyl-van der Waerden and Dirac representations we
have

U(A) =
[
A 0
0 A−1+

]
, U(A) =

1
2

[
A+A−1+ A−A−1+

A−A−1+ A+A−1+

]
. (99)

But an important warning: The hermitian conjugations a+, A+ in formulae (94)-
(99) are analytical artefacts – just the formal hermitian conjugate of matrices
meant as tables of numbers. There is no scalar product with respect to which
they would be true, geometric hermitian conjugates.
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2. Spinors, Fermions and Four-Dimensional Einstein-Cartan
Gravitation. Some Standard Ideas, Doubts and Questions

As mentioned, we usually base on the analytical language. For majority of non-
prepared audience the premature use of fibre bundle concepts more obscures than
elucidates. Nevertheless, from the principal point of view the fibre bundle lan-
guage is a proper one. Thus, all over in this paper, in particular in this section,
our treatment will rely on some compromise: the basic expressions are formulated
analytically, but certain fibre bundle comments are also included.
Let M be a four-dimensional space-time. It is inhabited by two realities: matter
and geometry, i.e., gravitation. According to the known figurative statement: “Mat-
ter tells to space how to curve, and space tells to matter how to move”. This is a
mutual interaction. According to contemporary ideas, the fundamental heavy mat-
ter like leptons and quarks has the fermionic nature, i.e., it is described by spinor
fields. Higgs bosons, if they really exist, are an exception. Fundamental interac-
tions are transferred by gauge fields and it is natural to expect that gravitation, the
oldest known and very important interaction is not an exception. So we remind
the basic ideas of the dynamics of Dirac-Einstein-Cartan system, starting from the
analytical concepts, e.g., R4 as the bispinor target space.
Analytically, bispinor fields are described by mappings

Ψ : M → C4 (100)

i.e., four-component complex fields-amplitudes on the space-time manifold. At
this stage we are interested only in bispinors as such, so we do not take into account
the existence of other, more specific quantum numbers (internal indices) at Ψ. If
xµ are some local space-time coordinates in M , then Ψ is analytically represented
by the system of symbols

Ψr (xµ) . (101)

This is the material sector. Degrees of freedom of the geometric-gravitational sec-
tor are described by two objects: gravitational cotetrad e and some SO(1, 3)-ruled
abstract connection Γ, explicitly

M 3 x 7→ ex ∈ L
(
TxM,R4

)
' R4 ⊗ T ∗xM (102)

M 3 x 7→ Γx ∈ L (TxM, so(1, 3)) . (103)

Obviously, TxM , T ∗xM denote respectively the tangent and cotangent spaces at
x ∈ M , SO(1, 3) denotes the restricted Lorentz group in Minkowskian space
R4 meant with the signature (+,−,−,−), and so(1, 3) is the Lie algebra of the
Lorentz group. To be more precise, we must use also the total non-connected
group O(1, 3) consisting of four connected components and its subgroups like
O↑(1, 3) (orthochronous one), SO(1, 3) (preserving the total orientation of R4 as
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a Minkowski space) and SO↑(1, 3) (preserving separately the temporal and spa-
tial orientations). Obviously, Γ as a vector-valued differential form takes values in
the Lie algebra of the connected component of unity SO↑(1, 3). Analytically, the
objects e, Γ are represented by systems of their components

eAµ(x), ΓABµ(x) (104)

where the Latin capitals, just like small Greek indices, run the standard range
(0, 1, 2, 3). Obviously, no confusion of the manifold M and the arithmetic space
R4 meant with the standard Minkowskian (+,−,−,−) metric is admissible. M
is an amorphous differential manifold with no fixed geometry, whereas R4 with
its Minkowski metric η is one of target spaces. Obviously, the cotetrad e is al-
gebraically equivalent to its dual contravariant tetrad ẽ with components eµA(x),
where

eAµe
µ
B = δAB, eµAe

A
ν = δµν . (105)

To be pedantic and complete with notation let us remind that the elements L ∈
O(4, η) ' O(1, 3) are defined analytically by

ηAB = ηCDL
C
AL

D
B, η = L∗η. (106)

The contravariant inverse ηAB is obviously given by

ηACηCB = δAB (107)

and the elements of Lie algebra, ` ∈ so(4, η) ' so(1, 3) are η-skew-symmetric

`AB = −ηACηBD`DC = −`BA. (108)

Let us stress that the above connection ΓABµ is not an affine connection, it is
as yet some abstract connection ruled by the Lorentz group and operating (e.g.,
parallel-shifting) on objects with the capital R4-indices. Of course, as expected, the
pair

(
eAµ,ΓABµ

)
gives rise to some affine connection, cf. (135) below. However,

for many reasons it is more convenient (although apparently less natural) to use
just ΓABµ as a primary quantity. Taking values in the Lie algebra so

(
R4, η

)
=

so(1, 3), ΓABµ is η-skew-symmetric, i.e.,

ΓABµ = −ΓBAµ = −ηACηBDΓDCµ. (109)

In other words, the primary object is some lower-case-index skew-symmetric quan-
tity

ΓABµ = −ΓBAµ (110)

and later on we define its byproduct

ΓABµ = ηACΓCBµ (111)

the latter one automatically satisfies (109).
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The space-time manifold M is amorphous and no absolute objects are assumed in
it, except, of course, the very differential structure. Unlike this, our target spaces
are endowed with some fixed, absolute geometries. Let us quote them detailly,
starting with the analytical description of target spaces like R4, R2, C4, C2, etc., in
spite of certain possibilities of doing mistakes.

i) R4 as a target space of the cotetrad field e is endowed with some fixed
Minkowskian structure, i.e., normal-hyperbolic metric η of the signature
(+,−,−,−), usually we simply put

[ηAB] = diag(1,−1,−1,−1). (112)

ii) C4 as a target space of the Dirac bispinor field is endowed with some
sesquilinear Hermitian form G of the neutral signature (+,+,−,−). It
is only signature what matters here; the particular numerical shape of G
is a merely choice of basis. We assume G to be antilinear/linear in the
first/second argument. There are two most popular choices, as we reminded
in the previous section are as follows:

[Gr̄s] =
[

0 I2

I2 0

]
(113)

[Gr̄s]D =
[
I2 0
0 −I2

]
. (114)

The first one occurs when so-called spinor representation (Weyl-van der
Waerden-Infeld representation) of bispinor objects is used. The second
choice is used in the Dirac representation. The choice (113) is well suited
to the use of two-component Weyl spinors as elementary entities. Repre-
sentation (114) is convenient when one discusses the non-relativistic limit
and the Pauli equation. Representations (113) and (114) are related to each
other through the covariant rule transformation

B+
[

0 I2

I2 0

]
B =

[
I2 0
0 −I2

]
(115)

where

B = B−1 = B+ = BT =
1√
2

[
I2 I2

I2 −I2

]
.

Bilinear form G is preserved by the pseudo-unitary group

U(4, G) ' U(2, 2) ⊂ GL(4,C).

Its Lie algebra u(4, G) ' u(2, 2) consists of matrices u which are anti-
hermitian in the G-sense

Gr̄zu
z
s +Gs̄zuzr = 0. (116)
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Obviously, the elements of U(4, G) ' U(2, 2) satisfy by definition

Gz̄sU
z̄
r̄U

s
t = Gr̄t. (117)

The contravariant inverse of G will be denoted by [Grs̄] and obviously

Grs̄Gs̄t = δrt, Gr̄tG
ts̄ = δr̄

s̄. (118)

The space of G-Hermitian elements of L(4,C) will be denoted by H(4, G),
and the space of sesquilinear Hermitian forms simply by H(4). Obviously,
they are real vector spaces (ones over R) and their elements are related to
each other by

hrs = Grz̄hz̄s. (119)
Lie algebra u(4, G) ' u(2, 2) is the imaginary unit multiple of H(4, G) '
H(2, 2)

u(4, G) = iH(4, G), u(2, 2) = iH(2, 2). (120)

iii) Another element of the target geometry is some fixed Clifford injection, i.e.,
a linear monomorphism

γ : R4 ↪→ H(4, G) = iu(4, G) ⊂ L(4,C) (121)

or, when the Dirac convention (114) is used,

γ : R4 ↪→ iu(2, 2) ⊂ L(4,C).

This is to be Clifford injection, so, if εA are elements of the standard zero-
one basis of R4, then their γ-images

γA := γεA (122)

satisfy the anticommutator rule

{γA, γB} = γAγB + γBγA = 2ηABI4 (123)

{γA, γB} = γAγB + γBγA = 2ηABI4 (124)

where, obviously
γA := ηABγB (125)

and the two conditions (123) and (124) are equivalent.
These conditions are but the special case of the general rules of Clifford al-
gebra. The fundamental idea of Clifford paradigm is to represent the scalar
square of vectors and convectors just as the usual square of something(

γAu
A
)2

= ηABu
AuBI,

(
γAfA

)2
= ηABfAfBI (126)

where I is the identity operator. From the tensorial point of view, the ob-
jects γA, γA commonly referred to as Dirac matrices, are mixed tensors,
i.e., linear mappings of the target space of the Ψ-objects into itself. Here,
in the physical four-dimensional case, γA, γA ∈ L(4, G). Obviously, the
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coincidence of the real dimension of M and the complex dimension of C4

is accidental and does not occur for the general n = dimM . For physical
reasons (real-valuedness of the Lagrangian for Ψ), linear mappings γA, γA
must be G-hermitian

γA, γA ∈ H(4, G) = iu(4, G) ' H(2, 2) = iu(2, 2). (127)

So, they must be imaginary-unit-multiples of elements of the Lie algebra of
pseudounitary operators in C4 preserving G. The linear shell of γA-s over
reals will be denoted by V

V := γ
(
R4
)
⊂ iu(4, G) ' iu(2, 2). (128)

Obviously, V is a real linear subspace of the real linear space iu(4, G) =
H(4, G). Lowering the first indices of γA-s, γA-s we obtain sesquilinear
hermitian forms on C4

ΓAr̄s = Gr̄zγ
Az

s, ΓAr̄s = Gr̄zγA
z
s (129)

cf. (119). Their linear shell will be denoted by Ṽ . It is a real four-dimensio-
nal subspace of the real space H(4) of all sesquilinear hermitian forms on
C4

Ṽ ⊂ H(4). (130)
Obviously, H(4, G) ⊂ L(4, G), H(4) are 16-dimensional over reals

dimR H(4, G) = dimR U(4, G) = dimR H(4) = 16. (131)

Let us stress that the concept of hermitian linear mappings as elements of
L(4, G) is always related to some hermitian scalar product G in C4. Unlike
this, the concept of sesquilinear hermitian form is metric-independent and
does not assume any G.

This was the list of absolute geometric objects in target spaces and in some their
byproducts. There are some important points concerning those objects. The bispi-
nor metric G which appears explicitly in Lagrangian for the Dirac field Ψ seems
to suggest that the pseudounitary group U(4, G) ' U(2, 2) may be expected to
describe some fundamental symmetries of spinorial geometrodynamics. At the
same time, it is well-known that the subgroup SU(4, G) ' SU(2, 2) consisting
of pseudounitary mappings with determinants equal to unity (the modulus is al-
ways unity) is the covering group of the Minkowskian conformal group, just like
SL(2,C) is the universal covering group of SO↑(1, 3). But this is the peculiarity
of the space-time dimension four.
In other dimensions there is no link between conformal and Cliffordian paradigms.
As our space-time seems to be just four-dimensional (no convincing evidence for
Kaluza philosophy), it is not clear which paradigm is to be accepted as a proper
foundation.
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As mentioned, the particular matrix (coordinate) realisation of objects G, γA, ΓA

does not matter. What matters are relationships between them, i.e., (123), (124),
(127), (129). In other words, no particular choice of subspaces V , Ṽ of the above
properties is essential. Let us stress however an important point. Although in the
above sense arbitrary, when once fixed, the subspaces V , Ṽ are globally fixed all
over M , independently on the choice of x ∈ M . This is not necessary for the
Clifford “square-rootization” (126) of the η-scalar product. In a sense this is some
global “action-at-distance” element of the description. If the theory is formulated
in fibre bundle terms, where Ψ are cross-sections of some complex fibre bundle
over M and the cotetrad field e is a cross-section of the principal fibre bundle
F ∗M of linear co-frames in M , this means that some structure in M is in a sense
flat.
The above target-space objects enable one to construct some family of important
geometric byproducts of the fields Ψr, eAµ, ΓABµ. Let us quote them.

i) Dirac-Einstein metric tensor field g [e, η] on M

g [e, η] := ηABe
A ⊗ eB (132)

i.e., analytically,
gµν = ηABe

A
µe
B
ν . (133)

With respect to this metric, the frame e is automatically η-orthonormal, i.e.,
Lorentzian

gµνe
µ
Ae

ν
B = ηAB, eAµe

B
νg
µν = ηAB. (134)

ii) Affine connection on M . Its holonomic coefficients are given by

Γαβµ = eαAΓABµeBβ + eαAe
A
β,µ (135)

where, as usual, comma denotes the partial differentiation. The η-skew-
symmetry of Γ (109), (110) implies that it is automatically Einstein-Cartan
connection. It is metrical, i.e., the corresponding covariant derivative of the
Einstein-Dirac metric vanishes

∇[Γ]g = 0 (136)

however, in general it is not symmetric. Its torsion tensor S, i.e., skew-
symmetric part of Γ

Sαβµ := Γα[βµ] =
1
2

(Γαβµ − Γαµβ) (137)

is in general non-vanishing and the following holds

Γαβµ =
{
α
βµ

}
+Kα

βµ =
{
α
βµ

}
+ Sαβµ + Sβµ

α − Sµαβ. (138)
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In the literature Kα
βµ is referred to as the contortion tensor. Raising and

lowering of indices is understood in the sense of Dirac-Einstein metric gµν .
In the sense of this metric contorsion is skew-symmetric in its two first
indices

Kα
βµ = −Kβ

α
µ = −gβλgακKλ

κµ. (139)
These relatively complicated properties show that really it is

ΓABµ = −ΓBAµ = −ηBCηADΓCDµ

that is to be used as a primary object. It is constrained only by the simple
algebraic condition of η-skew-symmetry. All Einstein-Cartan properties are
then just direct consequences.
For the sake of completeness, let us mention that the second term on the
right-hand side of (135) is in geometry referred to as the teleparallelism
connection Γtel[e] induced by the (co)frame e

Γtel[e]αβµ := eαAe
A
β,µ. (140)

It is uniquely defined by the condition that e is parallel with respect to Γtel[e]

∇[tel]βe
α
A = 0, ∇[tel]βe

A
α = 0. (141)

As always the difference of affine connections Γ, Γtel[e] is a tensor field of

valence
(

1
2

)
Γ− Γtel[e] = ΓABeA ⊗ eB (142)

Γαβµ − Γtel[e]αβµ = ΓABµeαAeBβ. (143)

The quantities ΓABµ are referred to as non-holonomic components of Γ
with respect to e. Obviously, Γtel[e] has the vanishing curvature tensor and
in general non-vanishing torsion, i.e., skew-symmetric part. This torsion
vanishes if and only if e is holonomic. If one expresses the torsion S of Γ
through its non-holonomic coefficients with respect to e

S[e] =
1
2

ΩA
BCeA ⊗ eB ⊗ eC (144)

one obtains the quantity Ω which in traditional geometric literature is known
as the non-holonomy object of e [10]

ΩA
BC = 2ŜABC =

〈
eA, [eB, eC ]

〉
(145)

[eA, eB] = ΩC
ABeC , deA =

1
2

ΩA
BCe

C ⊗ eB. (146)

Let us introduce the system of scalars

ΓABC := ΓABµeµC . (147)
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These quantities by their very definition satisfy

∇CeB = ΓABCeA (148)

∇µeν = Γλνµeλ (149)

where, obviously, ∇C denotes the covariant differentiation along the vec-
tor field eC , and eν = ∂/∂xν is the ν-th coordinate tangent vector of the
coordinate system xµ.
It is clear that non-holonomic coefficients of Γ[e] do vanish

Γtel[e]ABC = 0. (150)

iii) Bispinor connection form given analytically as ωrsµ. It operates with bispi-
nor indices and parallel transport of objects with such indices. This quantity
is G-antihermitian in internal indices r, s, i.e., ω is a differential form on
M with values in the Lie algebra u(4, G) ' u(2, 2). The matrices ωµ are
explicitly given by

ωµ =
1
8

ΓKLµ
(
γKγL − γLγK

)
(151)

cf. (111), and the inverse formula reads

ΓKLµ =
1
2

Tr
(
γKωµγL

)
(152)

just u(a) as an element of Lie algebra differential connection one-form tak-
ing values in the Lie algebra. So, there is a one-to-one relationship be-
tween systems of differential forms

[
ΓKL

]
and [ωrs]. When the field of

frames e is fixed, then any of vector-valued (Lie-algebra-valued) differen-
tial forms

[
ΓKL

]
and [ωrs] determines uniquely some Einstein-Cartan con-

nection Γαβµ.
iv) Dirac conjugation. This is an antilinear operation from C4 to its dual space

C4∗. Being numerical spaces, C4 and C4∗ might seem identical. But of
course, this is misleading. Working more precisely, we should have used
some abstract complex four-dimensional space D endowed with geome-
try based on some sesquilinear hermitian form G of the neutral signature
(+,+,−,−). Then D∗, the dual of D, is evidently something else. If Ψ is
an element of D, then Ψ̃, its Dirac conjugate, is an element of D∗. Analyti-
cal C4-representation is as follows

Ψ̃r := Ψs̄
Gs̄r. (153)

As seen from the use of complex conjugation, the assignment Ψ 7→ Ψ̃ is
an antilinear, or half-linear, isomorphism acting between complex linear
spaces D, D∗.
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An important remark-warning! In majority of papers and textbooks on field
theory, one simply identifies G with γ0 and uses the analytical formula

Ψ̃ = Ψ+γ0 (154)

where for Ψ analytically given by [Ψ1,Ψ2,Ψ3,Ψ4]T , Ψ+ is defined as the
formal hermitian conjugation of matrices, Ψ+ =

[
Ψ1,Ψ2,Ψ3,Ψ4

]
. Ob-

viously, this is geometrically meaningless and follows from the automatic
use of analytical C4-language. Indeed, Ψ, Ψ̃ are in fact elements of differ-
ent linear space, D and D∗. Matrices [Gr̄s],

[
γ0r

s
]

represent completely
different geometric objects. G is a sesquilinear hermitian form on D, i.e.,
twice covariant tensor, G ∈ D∗ ⊗ D∗ and D denotes here the complex
conjugate space of D and also D, D are different linear spaces. Dirac
“matrices” γA are mixed tensors in D, i.e., linear mappings of D into D∗,
γA ∈ L(D) ' D ⊗ D∗. What is written in standard, common language
is just that for the sake of convenience one uses special representations in
which the matrices of G, γ0 numerically coincide. But of course there ex-
ists an infinity of other representations where this is not true, the point is
only that usually they are not used, being, claimly, less convenient in calcu-
lations.

v) Covariant differentiation. Affine connection Γαβµ gives rise to the usual
covariant differentiation of tensor fields on M . Its e-non-holonomic coeffi-
cients ΓABµ enable one to differentiate objects with non-holonomic indices
with respect to e, for example

∇[
Γ̂
]
µ
tAB = ∂µt

A
B + ΓACµtCB − ΓCBµtAC . (155)

The corresponding mixed tensor tαβ in M

tαβ = eαAt
A
Be

B
β (156)

is then automatically differentiated in the usual way

∇[Γ]µt
α
β = ∂µt

α
β + Γαλµtλβ − Γλβµtαλ. (157)

Objects with spinor indices are covariantly differentiated according to the
rule generated by one for bispinors

∇[ω]µΨ = ∂µΨ + ωµΨ (158)

i.e., analytically

∇[ω]µΨr = ∂µΨr + ωrsµΨs. (159)

This rule is extended to the tensor algebra over C4, or more precisely, over
D, e.g.,

∇[ω]µϕ
r
s = ∂µϕ

r
s + ωrzµϕ

z
s − ωzsµϕrz
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etc., including also objects having indices related to the complex conjugate
space D.
All those rules are combined in an obvious way when one deals with ob-
jects having various kinds of indices. Such a unified differentiation will be
denoted simply by Dµ. Let us quote an example.

Dµϕ
α
β
A
B
r
s
z̄
ū = ∂µϕ

α
β
A
B
r
s
z̄
ū

+ ΓαλµϕλβABrsz̄ū − ΓλβµϕαλABrsz̄ū

+ ΓACµϕαβCBrsz̄ū − ΓCBµϕαβACrsz̄ū

+ ωrtµϕ
α
β
A
B
t
s
z̄
ū − ωtsµϕαβABrtz̄ ū

+ ωz̄ v̄µϕ
α
β
A
B
r
s
v̄
ū − ωv̄ ūµϕαβABrsz̄ v̄.

(160)

All possibilities of indices are here exhausted. There may be more or less
indices; everything is done according to the above rule which is automati-
cally compatible with the Leibniz rule for tensor products.
An important example: the cotetrad and tetrad fields. In the sense of the
above unified connection the following holds

Dνe
A
µ = 0, Dνe

µ
A = 0. (161)

This is equivalent to the relationship (135).
Obviously, when the differentiated object has only one kind of indices, then
D reduces to some corresponding rule like ∇[Γ], ∇[Γ̂]

, ∇[ω], where Γ̂µ is

an abbreviation for ΓABµ. Let us observe that in certain situations objects
with a few kinds of indices may be differentiated in a sense of only one of
them. For example, we may be interested in affine Γ-differentiation of any
of the “egs” (“Beine”) eA, A being fixed. Then, to avoid mistakes, in such
situations the corresponding label like Γ, Γ̂, ω will be used in the∇-symbol,
so, for example

∇[Γ]µe
ν
A = ∂µe

ν
A + ΓνλµeλA 6= Dµe

ν
A = 0. (162)

vi) The “world Dirac matrices”, i.e., H(D, G) ' H(4, G) ' H(2, 2)-valued
differential form e on M . More precisely, it is V -valued and analytically
defined as follows

ersµ := γA
r
se
A
µ. (163)

In other words, this e is a differential form with values in the imaginary unit
multiple of the Lie algebra of U(D, G) ' U(4, G) ' U(2, 2) when some
representation is fixed, it is V -valued

M 3 x 7→ ex ∈ L (TxM,V ) ⊂ L (TxM, iu(D, G)) .
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By the G-lowering of the first spinorial index of the “world Dirac matri-
ces”, we obtain a differential form with values in the space of Hermitian
sesquilinear forms on D ' C4. Analytically

er̄sµ = Gr̄ze
z
sµ = ΓAr̄seAµ. (164)

Again, when some representation is fixed, er̄sµdxµ is Ṽ -valued

M 3 x 7→ ẽx ∈ L
(
TxM, Ṽ

)
⊂ L (TxM,H(D, G)) . (165)

In analogy to (162), the quantities ersµ and er̄sµ, i.e., the corresponding V -
and V -valued differential one-forms on M , are parallel with respect to the
total Dµ-differentiation, i.e., total connection on M

Dνe
r
sµ = 0, Dνer̄sµ = 0. (166)

This is not true for the partial connection∇[Γ]µ.
Let us notice that the equivalence of two equations in (168) is due to the
fact that

DνGr̄s = 0 (167)
and the latter formula follows exactly from two properties of G: it is a mul-
tiplet of constant scalar fields on M (scalars in the sense of M as a mani-
fold), and ων is G-antihermitian (it takes values in the Lie algebra of pseu-
dounitary group U(D, G) ' U(2, 2), i.e., in the space of G-antihermitian
mappings).

As mentioned previously, the use of analytical description and numerical spaces
like C2, C4, R4, L(4,C), etc. as target spaces may be even essentially misleading.
What is worse, it obscures the physical interpretation and may prevent us to find a
proper model. That was the reason we suggested to use linear spaces W , D, etc.
as proper target (standard fibres).
Linear frames ex : TxM → V ⊂ iu (D, G) ' iu(2, 2) ' L (4,C) extend naturally
to isomorphisms of complexified Clifford algebras

CCl (TxM, g[e, η]x)→ L (D) ' L (4,C) ' CCl
(
R4, η

)
. (168)

Incidentally, it may look strange that the vector-valued differential forms [ers],
[er̄s] take values in some fixed subspaces V and Ṽ , not in the total, non-restricted
linear spaces

H(D, G) = iu(D, G) ' H(2, 2) ' iu(2, 2). (169)
This is a kind of rigid action at a distance structure. When translated into rigorous
fibre bundle language this means that there is some kind of rigid “flatness” built
up into the theory. In this respect the theory of two-component Weyl spinors is
much more natural and free of such aprioric absolute objects. Analytically, Weyl
spinors take values in C2 or, to be more precise, in a two-dimensional complex
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linear space W . Geometrically, they are cross-sections of some associated vector
bundle with the typical fibre W (or, more analytically, C2). As we have seen, the
bispinor space is then defined as the Cartesian product

D = W ×W ∗. (170)

The space W is completely amorphous, whereas its byproducts like D and H(W )
are full of intrinsic, inherited structures. Strictly speaking, and this is theoretically
important, not everything in Clifford geometry developed over D is completely
intrinsic. An intrinsic element is the particular choice of normalisation of η. In
geometry of single Weyl spaces this normalisation was not so essential, i.e., we
have no Clifford concepts there. If one follows the Clifford paradigm, a particular,
fixed normalisation of η must be assumed. Similarly, in the bispinor connection
expression (151), (152) η is essential with a given fixed normalisation. This nor-
malisation has to do with the normalisation of the symplectic structure in W . Let
us remind the formula

ηAB =
1
2
σA

bāσB
dc̄εbdεāc̄ (171)

ηAB =
1
2
σAbāσ

B
dc̄ε

āc̄εbd (172)

where
εacεcb = δab, ε āc̄ εc̄ē = δāē. (173)

As mentioned, they are defined up to squared real multipliers at the complex sym-
plectic form ε and its inverse ε̃; the factors exp(iϕ), ϕ ∈ R, do not influence them.
The four-component bispinor fields Ψ:M → D ' C4 may be interpreted as pairs
of two-component spinors: Weyl u:M → W and anti-Weyl v:M → W

∗. Let
us remind that physically the objects u, v may be used respectively for describ-
ing, e.g., the anti-neutrino and neutrino fields. One can introduce H(W )-valued
differential one-form given by analytically by

eab̄µ := σA
ab̄eAµ (174)

and similarly the vector-valued differential one-form with H(W ∗) ' H (W )∗ as
the target space

eābµ := σ̃Aābe
A
µ = ηABσ

B
ābe

A
µ. (175)

Those quantities are the “world Pauli matrices”. What concerns the second object,
perhaps from some point of view the reciprocal version contravariant in M would
be more adequate

eµab̄ = eµAσ
A
ab̄ (176)

with the dual contravariant tetrad instead the cotetrad

eAµe
µ
B = δAB, eµAe

A
ν = δµν . (177)

In any case (176) is free of the fixed normalisation of η.
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Let us observe that unlike the world Dirac matrices ersµ, the Weyl quantities
eab̄µ, eābµ (or rather eµāb) are completely amorphous. They take values in the
total spaces of all Hermitian tensors on the (two-dimensional) spinor target spaces.
Nothing like the aforementioned restriction to the real four-dimensional subspaces
V , Ṽ , is assumed (in the fibre bundle language — no global “action at distance”
“flatness” assumption). So again the two-component Weyl spinors seem to be most
elementary objects. The bispinor joining of the Weyl-anti-Weyl pairs into Dirac ob-
jects and first of all its Clifford explaining might be perhaps an artificial peculiarity
of the space-time dimension dimM = 4. Physically this joining is necessary for
introducing the mass terms to Lagrangians and for the invariance under “spatial
reflections” in spinor degrees of freedom.
In connection with this two-component language let us mention another byproduct
of fundamental Weyl quantities, namely the Weyl spinor connection and covariant
differentiation. Basing on the local action of the group GL(W ) on Weyl and anti-
Weyl spinors we can introduce gl(W ) ' L(W )-valued Weyl connection forms
wωabµ and the corresponding covariant differentiation. Later on those operations
may be raised to Dirac D-valued fields and to H(W )- and H(W ∗) ' H(W )∗-
valued fields.
According to formulae (89), (90), we have for the corresponding connection com-
ponents:

Γµ = Re Tr
(
σK (wωµ)σL

)
(178)

i.e., completely analytically

ΓKLµ =
1
2
σKb̄a (wωacµ)σLcb̄ +

1
2
σKb̄a

(
wωb̄c̄µ

)
σL

ac̄. (179)

It is thus clear that

Tr (Γµ) = ΓKKµ = 4Re Tr (wωµ) = 4Re (wωaaµ) . (180)

The formula inverse to (179), by analogy to (92), reads

wωabµ =
1
4

(
ΓKLµσKac̄σLc̄b −

1
2

ΓKKµδab
)

+
i
2

Im (wωccµ) δab (181)

where with a fixed ΓKLµ as a primary quantity, the last term, i.e., purely imaginary
gauging is completely arbitrary. Its value does not influence ΓKLµ.
The corresponding covariant differentiation of the Weyl spinors has the form

∇[wω]µu
a = ∂µu

a + (wωabµ)ub (182)

and similarly for the anti-Weyl spinors

∇[wω]µvā = ∂µvā − vc̄
(wωc̄āµ) . (183)
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The corresponding Dirac differentiation of bispinor fields has the unified form

∇[ω]µΨr = ∇[ω]µ

[
ua

vb̄

]
=

[
∇[wω]µu

a

∇[wω]µvb̄

]
. (184)

Let us quote in addition some similar formulae for bispinors

∇[ω]µΨ̃r = ∂µΨ̃r − ωsrµΨ̃s. (185)

It is interesting that in the above formulae the scale standard, i.e., particular nor-
malisation of η is non-essential and it does not occur at all. The two kinds of
amorphous two-component Weyl spinors are completely sufficient here. It is not
so in (152) where the indices of Dirac matrices are moved with the use of fixed-
normalised metric η.
Starting from the Weyl spinors, it is instructive to discuss the important problem of
metrical compatibility of our affine connections. First of all, an arbitrary GL(W )-
ruled connection form wωabµ gives rise to the connection Γµ, ΓABµ (see (178) and
(179)) dealing with the capital indices. Then, when some (co)tetrad field e is fixed,
the true affine connection Γαβµ (135) may be fixed. For a quite arbitrary connec-
tion wω, therefore, for a quite arbitrary affine connection Γαβµ, and for the original
definition of Dirac-Einstein metric (132) with somehow fixed normalisation of η,
we have the following Einstein-Cartan-Weyl rule

Γµνλ =
{
µ
νλ

}
+Kµνλ (186)

where
{
µ
νλ

}
is the Levi-Civita connection built of g [e, η], the K-tensor is given

by

Kµνλ = Sµνλ + Sνλ
µ − Sλµν +

1
2

(δµνQλ + δµλQν − gνλQµ) (187)

in which Sµνλ is the torsion of Γµνλ

Sµνλ =
1
2

(Γµνλ − Γµλν) (188)

and Qµ is the Weyl covector field, so that

∇λgµν = −Qλgµν (189)

and the covariant derivative is meant in the total Γ-sense.
One can easily show that

Qµ =
1
2

ΓAAλ = 2Re (ωaaµ) . (190)

However, the level of the Riemann-Cartan-Weyl space is not suited to the theory
of dynamically interacting geometry and spinor matter. To include the internal
Weyl invariance into theory one should introduce additional geometrodynamical
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quantities. One of explanations is just in (176). One would have to introduce into
this formula a new version of tetrad fµA, independent on eµA, and postulate same
dynamics for the system of geometrodynamical quantities.
So, let us go back to reporting the Einstein-Cartan-Dirac theory and then pass to
our original ideas.
Let us start with the remark that in a sense, paradoxically, generally-relativistic the-
ory of dynamical spinors, i.e., spinorial geometrodynamics, is less confusing than
the seemingly simpler specially-relativistic theory. The point is again in artefacts
and some hidden structures of Minkowski space. There is nothing like the smooth
transition to Dirac theory and spinor theory in a curved space. The reason is that
the covering group of GL(4,R) (any GL(n,R), n > 3) is not a linear group, so
it does not admit a faithful realisation in terms of finite-dimensional matrices (like
SU(2), SL(2,C), respectively for SO(3,R), SO↑(1, 3)). Affine spinors would
have to be either nonlinear or infinite-dimensional objects. The only way out of
this difficulty is to introduce the (co)tetrad field as an auxiliary object, gravitational
potential, by definition orthonormal one. Then the group SO(1, 3) (SO(H, η) ge-
ometrically speaking) “mixes” the (co)tetrad (co)legs in a way appropriately syn-
chronised with the action of SL(2,C) (SL(W )) on (bi)spinor fields. And the status
of this (co)tetrad field is geometrically mysterious. It is neither the gauge field
(at least in a standard sense; there were some non-standard attempts) nor Higgs
field, nor matter field or anything of a well-established status. It is the field of
reference frames that never occurs as a dynamical quantity in any physical the-
ory. Just an additional motivation to do something with this problem. By the way,
even in specially-relativistic spinor theory, the concept of tetrad is implicit present,
although apparently hidden.
Matter Lagrangian for the Dirac field in the standard Einstein-Cartan theory is
given by

Lm (Ψ, e, ω) =
i
2
gµνersµ

(
Ψ̃r∇νΨs −∇νΨ̃rΨs

)√
|g| −mΨ̃rΨr

√
|g|

=
i
2
gµνer̄sµ

(
Ψr̄∇νΨs −∇νΨr̄Ψs

)√
|g| −mGr̄sΨ

r̄Ψs
√
|g|

where, obviously, ersµ, er̄sµ are given by (163), (164, and
√
|g| is the W -density

built canonically of gµν √
|g| =

√
| det [gµν ] |. (191)

The same formula works in Minkowski space in curvilinear coordinates. No trick
enables us to hide the metric tensor gµν by the formal use of

eµrs := eµAγ
Ar
s = gµνersν
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(and similarly for er̄sµ), because the scalar density of weight one
√
|g| is necessary

if Lm is to be a correctly defined Lagrangian density.
We remember that in the standard Dirac theory, ersµ, er̄sµ represent vector-valued
differential one-forms taking values in some proper subspaces V , Ṽ of H(D, G)
or H(D∗). Unlike this, in Weyl theory for the field u one uses the most general
differential one-form eābµ without any restrictions on its values in H(W ∗)

LWeyl =
i
2
gµνeābµ

(
u ā∇νub −∇νu āub

)√
|g|. (192)

Let us remind that in all those formulae we are dealing with the Einstein-Cartan
model, where the Weyl covector vanishes

Qµ = 0 (193)

thus, the connection form wωabµ is trace-less, i.e., sl(2,C)-valued (and so are
wωabµ, wωrsµ), and ΓKLµ is η-skew-symmetric

ΓKLµ + ηKMηLNΓNMµ = 0 (194)

therefore, trace-less. Then automatically (194) implies that the affine connection
Γαβµ built of the abstract connection ΓABµ and the (co)frame

(
eAµ

)
eµA is met-

rical, i.e., it is an Einstein-Cartan connection, thus, the metrical one

∇λgµν = 0

although in general non-symmetric (the torsion S needs not vanish). This Levi-
Civita assumption would be too strong and artificial.
When the gravitational degrees of freedom, i.e., eābµ, or ersµ, or er̄sµ are fixed (and
so is the Einstein-Dirac metric g [e, η]µν) and not subject to the variational proce-
dure, then we obtain the following generally-relativistic Dirac and Weyl equations
formulated on the background of fixed geometry (gravitational field)

ieµAγA (∇µ + SννµI4) Ψ = mΨ (195)

(in natural units), i.e., more analytically

ieµrs (∇µsz + Sννµδ
s
z) Ψz = mΨr (196)

for Dirac equations and

ieµAσA (∇µ + SννµI2)u = 0 (197)

for generally-relativistic Weyl equation. Analytically

ieµāc (∇µcb + Sννµδ
c
b)ub = 0. (198)

Let us notice that the two-component Weyl equation is mass-less if it is to be self-
adjoint and relativistically invariant. The terms involving the trace of torsion are
remarkable. Only in the torsion-free Riemann space or in special Riemann-Cartan
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spaces with the vanishing trace of torsion, one obtains the expected equations. It is
interesting that the self-adjoint structure of field equations, i.e., the existence of La-
grangian is in both cases based on the fixed metric normalisation η. What concerns
the field equations themselves, the Dirac equation (195), (196) depends explicitly
on η through its occurrence in γA-s. Unlike this, only the Weyl Lagrangian is
based on some choice of η while the corresponding Weyl equation (197) or (198)
is non-metrical-amorphous.
Some problems appear when we admit also anti-Weyl field v and wish to consider
it simultaneously with the Weyl field; this union is just the Dirac field in a sense.
Then we have to use anti-Weyl Lagrangian, analytically

Lanti−Weyl =
i
2
eνAσ̃

Aab̄ (va∇νvb̄ − (∇νva) vb̄)
√
|g|

=
i
2
σ̃νab̄ (va∇νvb̄ − (∇νva) vb̄)

√
|g|

(199)

and even the resulting field equation will depend on the explicit fixation of η

ieµAσ̃A (∇µ + SννµI2) v = 0. (200)

An alternative way of writing (199) would be

Lanti−Weyl =
i
2
gµνfAµσ̃

Aab̄ (va∇νvb̄ − (∇νva) vb̄)
√
|g|. (201)

In the geometrodynamical sector we would have to use then two independent
tetrads

(
eµA, f

µA
)

or cotetrads
(
eAµ, fAµ

)
, with some independent dynamical

interaction between them. One really does something like this in spinor theory
invariant under the Weyl group. However, this would be a compromise and our
proper idea goes further towards the full conformal group as the gauge group of
geometrodynamics.
A natural procedure would be to consider e, f as logically independent, take the
spinor connection fundamental one, construct the corresponding affine connections
Γ [ω, e], Γ [ω, f ], in H, and to include some dynamical term built of e, f , e.g.,
starting from the twice covariant tensor

t [e, f ]µν = eAµfAν

or its symmetric part

γ [e, f ]µν =
1
2

(
eAµfAν + eAνfAµ

)
.

Obviously, there is plenty of algebraic and differential concomitants of the objects
t [e, f ], γ [e, f ] which might be a priori possible as interaction terms. And then, the
independence (at least partial one) of e, f -tensors might be used for elimination the
embarrassing standard of scale ηAB from the theory.
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Obviously, in the specially-relativistic limit, when pseudo-Cartesian coordinates
are chosen (and gravitational-geometric degrees of freedom are frozen), so that

eAµ = δAµ, ΓABµ = 0, wωabµ = 0, ωrsµ = 0, gµν = ηµν (202)

then for the weak bispinor and spinor fields we obtain

L =
i
2
γµrs

(
Ψ̃r∂µΨs − ∂µΨ̃rΨs

)
−mΨ̃rΨr (203)

L =
i
2
σµāb

(
uā∂µu

b − ∂µuāub
)

(204)

respectively for the Dirac and Weyl fields and obviously

iγµrs∂µΨs = mΨr, iσµāb∂µub = 0, iσ̃µab̄∂µvb̄ = 0 (205)

respectively for the Dirac, Weyl and anti-Weyl fields in special relativity.
Usually one concentrates in physics on two extreme situations:

1. Matter wave equations on the basis of fixed geometry.
2. Dynamics of gravitational field under the influence of matter.

Obviously, the most important situations are those characterised by the mutual
interactions. Especially when one is interested in evolution of the Early Universe
or the dynamics of highly concentrated objects like, e.g., neutron stars.
Let us quote a few Lagrangian terms used in the Poincaré gauge models of gravi-
tation, including the Einstein-Cartan model.
The most traditional Einstein-Cartan model is similar to the Palatini Lagrangian,
however, without restricting assumptions about the symmetry of affine connection

LEC
gr (e, ω) =

1
k
gµνR(Γ)αµαν

√
|g| (206)

k denoting gravitational constants, up to units and normalisation, R(Γ)αµκν is the
Riemann tensor built of Γ. The existence of Lagrangian linear in curvature is a
peculiarity of gravitation among all other gauge models of fundamental interac-
tions. (206) is believed to describe macroscopic gravitation. The quantities (e, ω)
or (e,Γ) are assumed to be two independent kinds of degrees of freedom. The
label “gr” refers to “gravity” or “geometry”.
The Yang-Mills term quadratic in curvature is constructed according to the stan-
dard prescription of gauge theories

LYM
gr (e, ω) =

1
`
RαβµνR

β
ακλg

µκgνλ
√
|g| (207)

where the Riemann tensor just as previously is built of affine connection, without
any direct use of g. The quantity ` is a “microgravitational” constant. It is as-
sumed to be responsible for gravitation in the very microscopic scale, at very small
distances.
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A priori one can admit the “cosmological-like” term

Lcosm
gr (e, ω) = Λ

√
|g| (208)

in which Λ is a constant (unlike to certain popular views, no sign of Λ may be
decided a priori, without comparison with experiments).
An important triple of terms is one quadratic in the torsion tensor. There are func-
tionally independent ones, known as Weitzenböck invariants

Ltorsion
gr (e, ω) = AgµκgνλSαµνS

β
κλ

√
|g|

+BgµνSαβµS
β
αν

√
|g|+ CgµνSααµS

β
βν

√
|g|

(209)

with A, B, C being constants. It is also expected that these terms have to do with
the microscale gravity. Let us observe the characteristic Killing-Cartan structure
of the S-S expression in the second term.
There is an opinion, expressed by Obukhov, Sardanashvilli and Ivanenko [4, 5, 9]
that combining approximately the above terms one obtains on the quantized level
the renormalizable theory. This is interesting, because according to certain views
the usual Einstein theory is so notoriously non-renormalizable like the old Fermi
model of weak interactions. If the mentioned views are true, this would be a new
argument in favour of gauge methodology in fundamental interactions.
The Einstein-Cartan gauge Poincaré model of the spinor-gravity (geometry) inter-
action is in fact a kind of gauge theory, although one must say a very peculiar one,
with certain features fairly uncommon with other, in a sense “true” gauge theories
of fundamental interactions.
Let us remind transformations like U(A) (65), u(a) (70), (71), AH (80), α(H) =
`(α) (88)–(90), P (A), p(a) (95)–(98) and apply them in the gauge theory context.
The gauge idea consists in that all transformations quoted above are local, i.e., x-
dependent. More precisely, we are dealing with the infinite-dimensional group of
pointwisely composed group-valued mappings

A : M → GL(W ) ' GL(2,C)

or in traditional Dirac-Einstein-Cartan theory

A : M → SL(W ) ' SL(2,C).

On the level of spaces H(W ), H(W ∗) ' H(W )∗ we are dealing with the resulting
mappings

AH = L(A) : M → R+O(1, 3)

or in the traditional Dirac-Einstein-Cartan theory

AH = L(A) : M → SO↑(1, 3)
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when the range of A is restricted to SL(W ) ' SL(2,C). Similarly, we deal with
mappings U : M → U(D, G), i.e., analytically, U : M → U(2, 2) and in Dirac-
Einstein-Cartan theory U , as mentioned, takes the values in the subgroup of cor-
responding to the D(1/2,0) ⊗D(0,1/2)-representation of SL(2,C). Transformation
properties of our objects are then as follows

[Ψr] 7→ [U(A)rsΨs] (210)[
eKµ

]
7→

[
L(A)KMeMµ

]
(211)[

ΓKMµ

]
7→

[
L(A)KNΓNRµL(A)−1R

M −
∂L(A)KN

∂xµ
L(A)−1N

M

]
(212)

[ωrsµ] 7→
[
U(A)rzωztµU(A)−1t

s −
∂U(A)rz
∂xµ

U(A)−1z
s

]
. (213)

The first two rules are homogeneous-linear. The next two ones are non-homoge-
neous, i.e., affine. They contain the typical non-homogeneous-additive corrections
for geometric objects of the connection type.
It is obvious that the total Einstein-Cartan-Dirac Lagrangians of the form

L = Lm (Ψ, e, ω) + Lgr(e, ω) (214)

Lm given by (191), andLgr obtained by summation of the terms (206), (207), (208)
and (209) is invariant under the action of the above gauge group. In this sense
Einstein-Cartan-Dirac theory is a kind of gauge theory with the internal (acting on
bispinor and on the tetrad legs) SL(W ) ' SL(2,C) group of local transforma-
tions. There are, however, some quite non-typical features of this gauge theory in
comparison with “true” gauge theories.
First of all, its main non-typical feature in comparison with commonly used gauge
theories is that the gauge group SL(W ) ' SL(2,C), just like the dilatations-
admitting GL(W ) ' GL(2,C), is non-compact. Much more strange is the dy-
namical use of the tetrad or equivalently cotetrad. The main meaning of this object
is that of the reference frame. In no other “true” gauge theory such an object oc-
curs as a dynamical quantity. In gauge gravitation it is an object which establishes
a bundle monomorphism of an abstract principal SO↑(1, 3)-bundle over M into
the bundle of linear frames FM ; more in detail, onto some SO↑(1, 3)-reduction of
FM . This reduction is dynamical, non-fixed, thus, it belongs to physical degrees
of freedom.
Besides of this fact there are a few other doubts as to the gauge status and general
structure of the theory.

1. The first one is that the differential vector-valued one-form

[ersµ]x =
[
γA

r
se
A
µ

]
x

: TxM → V ⊂ iu(D, G) ' iu(2, 2)
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takes values in the proper subspace V , not in the total space iu(D, G) '
iu(2, 2). As mentioned, in this respect the comparison with generally-
relativistic Weyl theory is rather instructive. When working with Weyl
spinors, we use the total spaces of Hermitian tensors H(W ), H(W ∗) '
H(W )∗ as target spaces. Why not to follow this pattern when dealing with
four-component spinors and basing on the conformal-motivated U(D, G)-
symmetry?

2. The (+,+,−,−) metric Gr̄s underlies Lm (Ψ, e, ω). So a desirable idea
is the symmetry just under conformally-motivated U(D, G) ' U(2, 2), not
only under SL(W ) ' SL(2,C) injected into U(2, 2) by the bispinor repre-
sentation D(1/2,0) ⊗D(0,1/2). To achieve it in a structureless M , one must
admit general vector-valued forms

[ersµ]x : TxM → H(D, G) ' H(2, 2).

3. In special relativity, the x-independence of the representation subspace V ⊂
H(D, G) ' H(2, 2) has to do with the Dirac-Clifford idea of taking the
square root of the d’Alembert operator. In general relativity, this paradigm
loses its conceptual coherence and convincing power. Classically, it is still
true that

(γµpµ)2 = gµνpµpνI4 (215)

but on the operator level,

(iγµ (∇µ + SννµI4))2 6= −gµν∇µ∇νI4 6= (iγµ∇µ)2 (216)

where
γµ := eµAγ

A

are the “world Dirac matrices”. There is no longer the Clifford square-
rooting of the d’Alembert operator, and the artificial globality of V becomes
a price paid for nothing.
Even in the simplest case of (artificial in this context) Levi-Civita connec-
tion, the right-hand side of (216) contains an additional term

−1
4
R I4 (217)

which rather destroys the coherence of Clifford paradigm as a fundamen-
tal physical postulate (here R denotes the scalar curvature of the Riemann
tensor).
Let us also stress another important point. Namely, Poincaré group is dras-
tically non-semi-simple. Because of this the Lagrangian (214), especially
in its geometric-gravitational part, is drastically non-unique and dependent
on plenty of arbitrary parameterizing constants. The good thing is only
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that according to views declared by people working in the topic, the result-
ing theory may be renormalizable on the quantum level and that it “macro-
scopic” part is compatible with standard general relativity, including such
its well-established consequences as the Schwarzschild solution and post-
Newtonian limit.

4. As mentioned, there is no dynamical use of frames in “genuine” gauge the-
ories. Generally-relativistic spinors must use tetrads because of the men-
tioned geometric reasons (for n ≥ 3, GL(n,R) and SL(n,R), the cov-
erings of GL(n,R) and SL(n,R) are nonlinear groups). Would not it be
better to reinterpret tetrads as additional gauge or Higgs fields? Or some-
thing else, but not reference frames. Let us remind, there is an idea by
Hehl, Ne’emann and others [1–3] to interpret the total Poincaré group, not
only the homogeneous Lorentz group, as the gauge group of relativity. But
then translations are either “external” gauge transformations acting on ar-
guments, not on values (like in “true” gauge theories), or they are internal
transformations acting in the affine instead of linear tangent spaces which
is also a rather difficult and exotic idea.

5. Dirac Lagrangian for the bispinor field is a rather surprising linear function
of quantities

J rsµ :=
(
Ψr∇µΨ̃s − (∇µΨr) Ψ̃s

)√
|g|. (218)

This expression has the typical structure of the bosonic current. The natural
question appears: does it mean anything deeper? Is this the true current
following from some invariance principle via the Noether theorem? What
would be the hypothetical primeval Lagrangian underlying such a system
of currents? The tensor structure of internal variables of this current in-
dicates directly on the pseudounitary group U(D, G) ' U(2, 2), the in-
ternal conformal geometry or a gauge scheme of gravitation and perhaps
the second-order in derivatives fundamental U(D, G) ' U(2, 2)-invariant
Lagrangian. The point is only then how to reconciliate the second-order
differential equation for Ψ with the physically well-established aspects of
Dirac theory?
Before going any further let us quote some heuristics concerning the last
point. This will be a maximally-simplified heuristics concerning the in-
terplay between second-order and first-order derivatives in wave equations.
Let us forget for a moment about four-component spinors, two-component
spinors, etc. The object we concentrate on for a while is the one-component
specially-relativistic complex Klein-Gordon field Ψ : M → C.
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The respective Lagrangian has the standard form

Lm(Ψ) =
1
2
gµν∂µΨ∂νΨ

√
|g| − c

2
ΨΨ

√
|g| (219)

with the obvious meaning of symbols and where c is constant (nothing to do
with “velocity of light”). This Lagrangian is globally invariant under U(1)
acting in the standard way

Ψ 7→ exp(iα)Ψ, α ∈ R. (220)

Localization of this phase invariance, i.e., passing over to the x-dependent
phase α results in a standard way into replacing

∂µ 7→ ∇µ = ∂µ − iqeµ (221)

q denoting the coupling constant (“charge”) and eµ is the “gauge” field.
Then the locally U(1)-gauge-invariant Lagrangian for the field Ψ becomes

Lm(Ψ, e) =
1
2
gµν∇µΨ∇νΨ

√
|g| − c

2
ΨΨ

√
|g|. (222)

The usual Maxwell dynamics for e (it is difficult to be inventive here) is

Lg(e) = −1
4
fµνfκλg

µκgνλ
√
|g|, fµν = ∂µeν − ∂νeµ. (223)

Therefore, the total dynamics is to be given by

L (Ψ, e) = Lm(Ψ, e) + Lg(e). (224)

Violating the nice gauge aesthetics, but reducing everything to the brutal
facts of ordering the differential operators, we can write

Lm(Ψ, e) = L′m(Ψ, e) +
1
2
gµν∂µΨ∂νΨ

√
|g| (225)

where

L′m(Ψ, e) = qgµνeµ
i
2

(
Ψ∂νΨ−

(
∂νΨ

)
Ψ
)√
|g|

(226)

−
(
c

2
− q2

2
gµνeµeν

)
ΨΨ

√
|g|.

In this language the resulting field equations may be written as

qieµ∂µΨ−
(
c

2
− q2

2
eµeµ −

iq
2
eµ;µ

)
Ψ− 1

2
gµν∂µ∂νΨ = 0 (227)

∂νf
µν = q2eµΨΨ +

iq
2
gµν

(
Ψ∂νΨ− ∂νΨΨ

)
. (228)

So, we have the coupled system of “Dirac” equation for Ψ, “parasitically”
disturbed by the second-order derivative term, and “Maxwell equation” for
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the “potential” eµ with the strange “current” composed of the term algebraic
in Ψ (the “Dirac” term) and the term involving derivatives (the “Klein-
Gordon” term). There is a natural question: do exist situations (“slowly-
varying” fields), when the last terms on the right-hand sides of (227), (228)
are negligible? If so, there is a range of applications for the truncated
“Dirac” Lagrangian and truncated “Dirac” dynamics

L′m(Ψ, e) =
i
2
qeµ

(
Ψ∂µΨ−

(
∂µΨ

)
Ψ
)√
|g|

(229)

−
(
c

2
− q2

2
eµeµ

)
ΨΨ

√
|g|

ieµ∂µΨ =
(
c

2q
− q

2
eµeµ −

i
2
eµ;µ

)
Ψ (230)

fµν ;ν = ∂νf
µν = q2eµΨΨ. (231)

This “truncated model” is rather artificial, but it brings about the following
question:
Is not the “genuine” Dirac theory also a truncated part of some more funda-
mental Klein-Gordon theory with the gauge group U(2, 2)?
Let us proceed.

3. U(2, 2) as an Expected Fundamental Symmetry in Spinor
Geometrodynamics

3.1. Some Objections Against Dirac Theory

Generally-relativistic Dirac theory deals with a triple of mutually interacting ob-
jects: the bispinor matter wave Ψ and two geometrodynamical quantities, namely,
the tetrad field e and the SL(2,C)-ruled bispinor connection ω, which gives rise to
the covariant differentiation of bispinors

∇µΨr = ∂µΨr + ωrsµΨs. (232)

The target spaces of e and Ψ, i.e., R4 and C4, are endowed with certain geometric
structures. Namely, R4 is Minkowskian space with the scalar product η, whereas
in C4 a neutral-signature hermitian form G is fixed. Analytically

[ηAB] = diag (1,−1,−1,−1) , [Gr̄s] = diag (1, 1,−1,−1) .

G gives rise to the Dirac conjugation of bispinors

Ψ̃r := Ψs̄
Gs̄r. (233)
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Within the matrix algebra L(4,C) one fixes a quadruplet of G−hermitian Dirac
matrices γA satisfying Clifford anticommutation rules

γAγB + γBγA = 2ηABI4. (234)

The tetrad field e and the internal metric η give rise to the metric tensor g on the
space-time manifold M

gµν := ηABe
A
µe
B
ν . (235)

Similarly, the pair (e, ω) induces the Einstein-Cartan affine connection

Γλµν := eλAΓABνeBµ + eλAe
A
µ,ν , ΓABµ :=

1
2

Tr
(
γAωµγB

)
. (236)

where the shift of capital indices is meant in the η-sense.
Matter Lagrangian is given by

Lm(Ψ; e, ω) =
i
2
eµAγ

Ar
s

(
Ψ̃r∇µΨs −∇µΨ̃rΨs

)√
|g| −mΨ̃rΨr

√
|g|. (237)

A few choices of geometrodynamical Lagrangians are logically consistent and
compatible with experimental data. The simplest of them, used in Einstein-Cartan
theory, is proportional to the curvature scalar R(Γ, g) built of Γ and g. There are
also more sophisticated models, admitting the Yang-Mills terms quadratic in cur-
vature, and algebraic terms quadratic in torsion [2–5, 9].
This scheme is a kind of gauge theory in which SL(2,C) is its structural group,
the cotetrad field

[
eAµ

]
, or rather its 2 : 1 spinorial covering object, is a reference

frame (cross-section of the corresponding principal bundle), [ωrsµ] is a connection
form on the principal bundle, and the matter field [Ψr] represents a cross-section
of an associate bundle with the standard fibre C4. Although this theory works
perfectly in usual applications, some principal objections may be raised against it.
Let us quote them.

1. The tetrad field e enters the Lagrangian Lm through the differential one-
form

[ersµ] =
[
γAe

A
µ

]
(238)

with values in the R-linear span of Dirac matrices V :=
3
⊕
A=0

RγA. This

linear subspace of the space of all G-hermitian matrices is fixed once for
all and used as the value-space of (238) at all space-time points. This is a
global, rigidly fixed structure that drastically violates the local paradigm of
gauge theories. In a sense, it is an action-at-distance concept. It would be
much more compatible with the local philosophy of gauge theories if we
admitted the linear mappings [ersµ]x to be general injections of TxM into
the space of G-hermitian operators in C4.
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2. In the genuine gauge theories of elementary particle physics, the reference
frame never occurs explicitly as a dynamical quantity. Field equations are
imposed on associate bundle objects (matter) and connections in principal
bundles (interaction). Unlike this, in spinor theory, the tetrad field is an im-
portant dynamical variable from the gravitational sector. One cannot avoid[
eAµ

]
when constructing Lagrangians. But if so, there is a temptation to

modify the theory in such a way as to turn the cotetrad into a gauge field of
some kind.

3. The internal metric G is explicitly used in the construction of Lagrangian.
This suggests that it is rather the total pseudounitary group U(4, G) '
U(2, 2) than its injected subgroup SL(2,C) that should be used as a proper
group of physical symmetries. SU(2, 2) is in fact used in twistor geom-
etry and conformal field theory [6, 8], because it is the covering group
of the conformal group CO(1, 3). However, without serious and compli-
cated modifications, this approach is applicable only to massless particles in
Minkowskian space-time. Moreover, although in this treatment field equa-
tions are invariant under SU(2, 2) combined with the conformal action on
the wave function argument, the Lagrangian itself is not invariant. Thus, the
resulting symmetries are non-Noetherian, and do not lead to conservation
laws.

4. An intriguing structural feature of the Lagrangian (237) is that it is built of
quantities

J rsµ := (∇µΨ̃sΨr − Ψ̃s∇µΨr)
√
|g| (239)

with a characteristic structure of bosonic Noether currents. What does it
mean? What is the hypothetical primeval Lagrangian leading to these cur-
rents? What group is to be used? The very algebraic structure of J rsµ
suggests the group U(4, G) and the Klein-Gordon Lagrangian for Ψ with G
as an internal metric.

3.2. Second-Order Derivatives Model with the Internal U(2, 2)-Symmetry

The four-dimensional space-time manifold M of our model is not endowed with
any absolute geometry apart, of course, the very differential structure. There are
two basic target spaces, namely, the complex linear algebra L(4,C) and its natu-
ral domain C4. The algebra L(4,C) appears as the faithful irreducible realisation
of the complexified Clifford algebra for the standard Minkowskian space

(
R4, η

)
,

where [ηAB] = diag(1,−1,−1,−1). Therefore, the amplitude space C4 will be
endowed with the neutral signature (+,+,−,−) pseudo-unitary geometry. The
corresponding hermitian form will be denoted by G, analytically, Gr̄s. This form
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appears in physics in the mass term of Dirac equation. It is also an intertwin-
ing operator interrelating two mutually hermitian-conjugate representations of γ-
matrices. The G-shift of indices enables one to construct the Dirac conjugation
Ψ̃r := Ψs̄

Gs̄r, it is an antilinear isomorphism of C4 onto its dual C4∗ ' C4.
The scalar product G gives rise to the pseudo-unitary group U(4, G) ⊂ GL(4,C),
if we put [Gr̄s] = diag(1, 1,−1,−1), then, of course, U(4, G) = U(2, 2). The
corresponding Lie algebra u(4, G) ⊂ L(4,C), isomorphic with u(2, 2), consists of
matricesAwhich areG-antihermitian, i.e., satisfyG(Au, v) = −G(u,Av) for any
u, v ∈ C4 (where, of course, G(u, v) = Gr̄su

r̄vs). The imaginary unit multiple
iu(4, G) of u(4, G) consists of G-hermitian matrices; in particular, Dirac matrices
belong to this class.
Our model involves three kinds of independent dynamical variables:

i) the matter field, i.e., wave amplitude Ψ : M → C4

ii) the normal-hyperbolic metric tensor g
iii) the U(4, G)-ruled connection onM , locally represented as a u(4, G)-valued

differential one-form

M 3 x→ Ax ∈ L (TxM, u(4, G)) .

The corresponding analytical symbols are Ψr, gµν , Arsµ, where r = 1, 2, 3, 4,
µ, ν = 0, 1, 2, 3.
Geometrodynamical sector is described by two field quantities (g,A). There is no
dynamical use of tetrad, affine connection, or SL(2,C)-ruled spinor connection.
Instead, all these quantities will appear as byproducts of A, after the SL(2,C)-
reduction.
Local transformations U : M → U(4, G) act on our field quantities according to
the standard rule

(UΨ) (x) = U(x)Ψ(x), Ug = g

(UA)x = U(x)AxU(x)−1 − dUxU(x)−1.
(240)

Covariant differentiation of wave amplitudes is defined as

∇µΨ = ∂µΨ + g

(
Aµ −

1
4

TrAµI
)

Ψ +
q

4
TrAµΨ

= ∂µΨ + gAµΨ +
q − g

4
TrAµΨ

(241)

where the coupling constants g and q correspond, respectively, to the subgroups
SU(4, G), eiRI . The curvature form F depends only on the “semisimple” coupling
constant g,

Fµν = DAµν = dAµν + g [Aµ, Aν ] = ∂µAν − ∂νAµ + g [Aµ, Aν ] . (242)
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Matter Lagrangian will be assumed in the Klein-Gordon form

Lm (Ψ;A, g) =
b

2
gµν∇µΨ̃∇νΨ

√
|g| − c

2
Ψ̃Ψ

√
|g|

=
b

2
gµν∇µΨr̄∇νΨsGr̄s

√
|g| − c

2
Gr̄sΨ

r̄Ψs
√
|g|

(243)

b, c denoting constants. This is the only reasonable model locally invariant under
U(4, G). Dirac-like models based on first-order differential equations are incom-
patible with our choice of degrees of freedom, because we have no tetrad or any
other vector-valued differential one-form transforming under (240) according to a
homogeneous-linear rule.
The gauge-invariant Noether current corresponding to the U(4, G) ' U(2, 2)-
symmetry is given by

J (Ψ;A, g)rsµ :=
b

2

(
Ψr∇µΨ̃s −∇µΨrΨ̃s

)√
|g|. (244)

Just as in electrodynamics, it is algebraically equivalent to derivatives of Lm with
respect to the gauge potential

∂Lm(Ψ;A, g)
∂Arsµ

= gJ srµ +
q − g

4
J zzµδsr. (245)

The only reasonable dynamical model for A is that based on the Yang-Mills La-
grangian

LYM (A, g) =
a

4
Tr (FµνFκλ) gµκgνλ

√
|g|+ a′

4
Tr (Fµν) Tr (Fκλ) gµκgνλ

√
|g|

(246)
where a, a′ are constants depending on the choice of units; they refer, respectively,
to the subgroups SU(4, G) and eiRI of U(4, G).
There is less aprioric evidence as to the choice of the dynamical term for g. Let us
quote three natural possibilities:

i) Palatini-like model. In this scheme there is no separate Lagrangian for g.
The total Lagrangian reduces to Lm (Ψ;A, g) +LYM (A, g), and the metric
tensor enters it in a purely algebraic way. Nevertheless, just as in the usual
Palatini model, g is a dynamical variable, subject to the variational proce-
dure in Lm +LYM. The usual gravitational constant of Einstein theory will
be proportional to the inverse of a.

ii) Hilbert-Einstein model

LHE(g) = −dR(g)
√
|g|+ l

√
|g| (247)

in which d, l are constants, and R(g) denotes the scalar curvature of g. The
correspondence of our model with the standard gravitation theory enables
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one to identify some linear combination of d, a with the inverse of the grav-
itational constant. Formally, the parameter l has the cosmological constant
status, there are, however, no aprioric restrictions on its sign. Obviously,
putting d = 0, l = 0, we obtain Palatini-like model.

iii) g might be a byproduct of something else, like, e.g., some vector-valued dif-
ferential one-formE onM , transforming under (240) according to a homo-
geneous rule (generalized cotetrad). It is reasonable to assume Lagrangian
quadratic in the A-covariant differential of E.

The analogy with the usual Palatini principle enables one to suppose that the
model i) will be more suitable and reasonable than ii) with non-vanishing d, l.
However, at this stage, we refrain from any choice and assume ii) with the possi-
bility of putting d = 0, l = 0.

The gauge field momentum Hr
s
µν is defined as usually

Hr
s
µν :=

∂LYM

∂Asrµ,ν
(248)

and thus

Hµν = −aFµν
√
|g| − a′I4 TrFµν

√
|g| (249)

where the shift of the spatio-temporal indices is meant in the g−sense.

The metrical energy-momentum tensor of matter and gauge fields is given by

Tµν = Tm
µν + TYM

µν = − 2√
|g|

∂(Lm + LYM)
∂gµν

−
(
∂(Lm + LYM)

∂gµν,α

)
,α


after short calculations, one obtains

Tmµν = b∇(µΨ̃∇ν)Ψ−
b

2
∇αΨ̃∇βΨgαβgµν +

c

2
Ψ̃Ψgµν (250)

TYMµν = aTr (FµκFνκ)− a

4
Tr
(
FαβF

αβ
)
gµν

(251)
+ a′Tr (Fµκ) Tr (Fνκ)− a′

4
Tr (Fαβ) Tr

(
Fαβ

)
gµν .

Obviously, the total Lagrangian underlying our variational principle is given by

L = Lm + LYM + LHE
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and then the resulting Euler-Lagrange equations may be written in the following
form

gµν∇[g]µ∇[g]ν +
c

b
Ψ = 0 (252)

∇[g]νH
µν = gJ µ +

q − g
4

TrJ µI4 (253)

d

(
R(g)µν − 1

2
R(g)gµν

)
= − l

2
gµν +

1
2
Tµν (254)

where ∇[g]µ denotes the total covariant differentiation corresponding to the simul-
taneous use of the Yang-Mills connection Arsµ (internal indices) and the Levi-

Civita connection
{
α
βµ

}
(spatio-temporal indices),R(g)µν denotes the Ricci ten-

sor of g.
Let us observe that the left-hand side of (253) may be rewritten as

∇[g]νH
µν = ∂νH

µν + g [Aν , Hµν ] = Hµν
;ν + g [Aν , Hµν ] (255)

where the semicolon denotes the Levi-Civita covariant differentiation. Although
Hµν

;ν = ∂νH
µν (because H is a skew-symmetric contravariant tensor density of

weight one), it will be convenient in our later calculations to use the form with
Hµν

;ν .
If we use the Palatini-like pattern, d = 0, l = 0, then (254) becomes Tµν = 0, just
as in Poincaré-gauge models of gravitation. If d = 0, but the “cosmological” term
is admitted, them Tµν = lgµν .
Apparently, the above U(2, 2)-invariant Klein-Gordon-Yang-Mills system has no-
thing to do with the physically well-established Dirac equation and Einstein-Cartan
geometrodynamics. The wave equation (252) is a second-order differential equa-
tion, and it is difficult to expect any reasonable correspondence with the first-order
Dirac equation and its Clifford background. However, a more detailed analysis re-
veals not only the correspondence but also certain promising features of the model.

3.3. Expressing Everything in Terms of the Internal Symmetry SL(2,C)

The correspondence with generally-covariant Dirac theory and with an Einstein-
Cartan type geometrodynamics becomes readable when one expands all internal
quantities with respect to a basis adapted to an appropriate monomorphism of
SL(2,C) into U(4, G) ' U(2, 2). This monomorphism corresponds to the stan-
dard injection of the proper Lorentz group SO↑(1, 3) into the conformal group
CO(1, 3). Let γA, A = 0, 1, 2, 3, be any quadruplet of Dirac matrices adapted to
the hermitian form G, thus, iγA ∈ u(4, G), and

γAγB + γBγA = 2ηABI4. (256)
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It is well-known that complexified Clifford algebra L(4,C) is generated by Dirac
matrices. Besides of γA’s themselves the most natural γ-adapted basis contains the
following standard matrices

γ5 = −γ5 = −γ0γ1γ2γ3, Aγ = iγAγ5 = −iγ5γA (257)

ΣAB =
1
4

(
γAγB − γBγA

)
= −ΣBA. (258)

The quadruplet of Aγ’s obeys the Clifford rules with the reversed signature, i.e.,
(−,+,+,+)

AγBγ + BγAγ = −2ηABI4. (259)
The Lie algebra u(4, G) is an R-linear shell of matrices

iγA, iAγ, ΣAB, iγ5, iI4. (260)

Geometrically and physically relevant subalgebras of u(4, G) are R-linear shells
of the following subsystems:

• su(4, G): iγA, iAγ, ΣAB , iγ5.
• Lorentz algebra, i.e., injected sl(2,C): ΣAB .
• Weyl algebra, i.e., injected sl(2,C)⊕ RI2: ΣAB , iγ5.
• injected gl(2,C): ΣAB , iγ5, iI (Weyl algebra and U(1)-gauges).

It is convenient to use the following mixtures of two kinds of γ’s

τA :=
1
2

(γA + Aγ) =
1
2
ηAB

(
γB + Bγ

)
(261)

χA :=
1
2

(
γA − Aγ

)
. (262)

They generate Abelian Lie algebras

[τA, τB] = 0,
[
χA, χB

]
= 0.

Within the twistor formalism, the group generated by τA’s is identified with spatio-
temporal translations and that generated by χA’s with proper conformal transfor-
mations of the four-dimensional Minkowskian space. ΣAB’s generate Lorentz
transformations and iγ5 – dilatations. In our, generally-covariant, approach, the
group U(4, G) ' U(2, 2), describes purely internal symmetries without any direct
relationship to subgroups of DiffM .
As γ-matrices do not generate Lie subgroups, it is convenient to replace the sys-
tem (260) by the following one, better suited to the group structure of U(4, G).

iτA, iχA, ΣAB, iγ5, iI4. (263)

The Yang-Mills field A will be expanded as follows

Aµ =
1
2

Ω̌AB
µΣAB +Bµ

1
i
γ5 +A′µiI + eAµiτA + fAµiχA (264)
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where Ω̌AB
µ = −Ω̌BA

µ, and all indicated coefficient fields are real. Let us define:

ΩA
Bµ := Ω̌A

Bµ + 2BµδAB (265)

and

Ω̌A
Bµ = ΩA

Bµ −
1
4

ΩC
Cµδ

A
B, Bµ =

1
8

ΩA
Aµ. (266)

Then, (264) may be rewritten as

Aµ =
1
2

ΩAB
µ

(
ΣAB +

1
4
ηAB

1
i
γ5
)

+ eAµiτA + fAµiχA +A′µiI. (267)

The correspondence analysis will be based on rescaled quantities:

ΓABµ := gΩA
Bµ, Γ̌ABµ = ΓABµ −

1
4

ΓCCµδAB (268)

Qµ := 4gBµ =
g

2
ΩA

Aµ =
1
2

ΓAAµ (269)

εAµ := geAµ, ϕAµ := gfAµ. (270)

Expressing the Yang-Mills field in terms of Γ, we obtain

Aµ =
1
2g

ΓABµ
(

ΣAB +
1
4
ηAB

1
i
γ5

)
+ eAµiτA + fAµiχA +A′µiI (271)

∇µΨ = DµΨ + geAµiτAΨ + gfAµiχAΨ (272)

where

DµΨ = ∂µΨ +
1
2

ΓABµ
(

ΣAB +
1
4
ηAB

1
i
γ5

)
Ψ + qA′µiΨ. (273)

Let us now describe how the spinorial group SL(2,C) acts of these objects. Any
choice of γ-matrices gives rise to same monomorphism

U : SL(2,C)→ U(4, G) ⊂ GL(4,C)

it is given by the formulae

U(A) = exp
(

1
2
tABΣAB

)
(274)

A = exp
(

1
8
tAB

(
σ̃AσB − σ̃BσA

))
, σ̃A = ηABσB (275)

where σA, A = 0, 1, 2, 3, denotes the relativistic quadruplet of Pauli matrices. In
the last formula it is put, exceptionally, σA = σA, whereas the η-shift of indices is
indicated by the tilde symbol. For certain geometric reasons, there is no escaping
this inconsistency without introducing an obscuring crowd of additional symbols
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[11, 12]. The Lorentz transformation L(A) ∈ SO↑(1, 3) assigned to A satisfies,
obviously, the following conditions

U(A)γKU(A)−1 = γML(A)MK (276)

L(A)KM =
1
4

Tr
(
γKU(A)γMU(A)−1

)
=

1
2

Tr
(
σKAσMA

+
)
. (277)

Obviously, local transformationsA:M → SL(2,C) act on wave amplitudes through
U(A), like in (240)

(U(A)Ψ) (x) = U (A(x)) Ψ(x). (278)

The gauge field components eKµ, fKµ, ΓKLµ, A′µ suffer in virtue of (278), the
following transformations:

eKµ
′ = L(A)KMe

M
µ (279)

fKµ
′ = fMµL(A)−1M

K (280)

ΓKNµ′ = L(A)KMΓMHµL(A)−1H
N −

∂L(A)KM
∂xµ

L(A)−1M
N (281)

(A′µ)′ = A′µ. (282)

It is important that if the local U(4, G) ' U(2, 2)-symmetry is restricted to the sub-
group U(SL(2,C)), the transformation rule for e becomes homogeneous and alge-
braic inL(A). The field f transforms contragradiently to e, thus, roughly speaking.
e, f are, respectively, contravariant and covariant vectors in Minkowskian space
(R4, η). The Γ-coefficients transform under SL(2,C) exactly as non-holonomic
coefficients of some SO↑(1, 3)-ruled spatio-temporal connection. If we extend
SL(2,C) to GL(2,C), faithfully generated in bispinor space by ΣAB , iγ5, iI4,
the Lorentz group SO↑(1, 3) is replaced by the Weyl group eRSO↑(1, 3), and the
above-quoted transformation properties of e, f , Γ, A′, remain true. Thus, if we
assume in addition that det

[
eAµ

]
6= 0, then, from the point of view of the reduced

symmetry GL(2,C), e becomes the cotetrad, and coefficients ΓKMµ are, related
to this cotetrad, non-holonomic coefficients of some Einstein-Cartan-Weyl affine
connection [2]. The trace-less part Γ̌KMµ is an Einstein-Cartan connection, and
Qµ = (1/2)ΓAAµ becomes the Weyl covector. The fields fA form an additional
cotetrad; we have used it in our GL(2,C)-invariant approach to spinors, to com-
pensate the effect of dilatations. Within our model the cotetrad field e is interpreted
dynamically, as a part of the U(4, G)-ruled Yang-Mills field, not as a reference
frame for some SL(2,C)-ruled bispinor connection. Admitting also Qµ and A′µ
we obtain the GL(2,C)-connection, which compensates also local dilatations and
local electromagnetic gauges. The partDµΨ (273) of the covariant derivative∇µΨ
is just the corresponding GL(2,C)-invariant covariant differentiation of bispinors.
It becomes the usual SL(2,C)-derivative if we put Qµ = 0, A′µ = 0.
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If e, f are co-tetrads (in general, they need not be so), i.e., if det
[
eAµ

]
6= 0,

det[fAµ] 6= 0, then Yang-Mills fieldA gives rise to certain spatio-temporal objects,
assigned to A in a locally GL(2,C)-invariant way. For example, we can define
following algebraic objects

t (e, f)µν := eAµfAν , G (e, f)µν = t (e, f)(µν) . (283)

The latter is a metric-like quantity. We can also introduce SL(2,C)-invariant
Dirac-Einstein matrices

h (e, η)µν = ηABe
A
µe
B
ν , h (f, η)µν = ηABfAµfBν . (284)

We can also construct the following spatio-temporal affine connections Γ(e)λµν ,
Γ(f)λµν , assigned to A in a locally GL(2,C)-invariant manner

Γ(e)λµν = eλAΓABνeBµ + eλµe
A
µ,ν (285)

Γ(f)λµν = −fAµΓABνfλB + fλAfAµ,ν . (286)

They are Einstein-Cartan-Weyl connections in the sense of metrics h (e, η) and
h (f, η), respectively

∇[Γ(e)]λh (e, η)µν = −Qλh (e, η)µν , ∇[Γ(f)]λh (f, η)µν = −Qλh (f, η)µν .

It must be stressed, however, that, in view of the independent dynamical status of
gµν , they need not be metrical with respect to gµν , thus, in general, the tensors

K(e)λµν := Γ(e)λµν −
{
λ
µν

}
, K(f)λµν := Γ(f)λµν −

{
λ
µν

}
(287)

will not have any special algebraic properties.
Torsion and curvature tensors of Γ(e), Γ(f) will be denoted by S(e), S(f), R(e),
R(f), thus

S(e)λµν = Γ(e)λ[µν], S(f)λµν = Γ(f)λ[µν] (288)

R(e)λκµν = 2Γ(e)λκ[ν,µ] + 2Γ(e)λρ[µΓ(e)ρ|κ|ν] (289)

R(f)λκµν = 2Γ(f)λκ[ν,µ] + 2Γ(f)λρ[µΓ(f)ρ|κ|ν]. (290)

Let us now express the curvature form of A in terms of the SL(2,C)-reduction.
After some calculations one obtains

F = DA = T (e)AiτA + T (f)AiχA +
1
2
R̃ABΣAB + G̃

1
i
γ5 + F ′iI (291)
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where

T (e)A = deA + gΩA
B ∧ eB = deA + ΓAB ∧ eB

R̃AB = R(Ω)AB −
1
4
R(Ω)CCδ

A
B − 2geA ∧ fB + 2gηACηBDeD ∧ fC

=
1
g
R(Γ)AB −

1
4g
R(Γ)CCδ

A
B − 2geA ∧ fB + 2gηACηBDeD ∧ fC

G̃ =
1
4g

dQ− geA ∧ fA =
1
g

[
1
8
R(Γ)AA − g

2eA ∧ fA
]

F ′ = dA′

and R(Γ) denotes the curvature form of the eRSO(1, 3)↑-ruled connection Γ

R(Γ)AB = dΓAB + ΓAC ∧ ΓCB, R(Ω)AB = dΩA
B + gΩA

C ∧ ΩC
B.

At this stage Γ is an abstract eRSO↑(1, 3)-ruled connection, andR(Γ) – its abstract
curvature. An affine connection in M and its curvature may be assigned to them
only after some choice of tetrad had been done, and it is not yet the case. In general
e, f are free to be singular, or even vanishing.
The torsion-like structure of quantities T (e), T (f) is easily recognised. There
is nothing surprising in it as for example, we know that the torsion of a linear
connection may be reinterpreted as a part of curvature of the corresponding affine
connection. Here one is dealing with the conformal connection A. Some of its part
may interpreted as translational torsion, “proper conformal” torsion, and Lorentz-
rotational curvature.
If e, f are co-tetrads, i.e., det

[
eAµ

]
6= 0, det [fAµ] 6= 0, then the following

relationships hold

S(e)λµν = −1
2
eλAT (e)Aµν , S(f)λµν = −1

2
fλAT (f)Aµν (292)

R(e)λκµν = eλAe
B
κR

A
Bµν , R(f)λκµν = −fAκfλBRABµν (293)

where, of course

eAλe
λ
B = δAB, fAλf

λB = δA
B.

3.4. Reducing Everything to the Subgroups SL(2,C) and GL(2,C)

The above reduction concerned only the kinematical concepts. Let us now express
the dynamics of our model in terms of SL(2,C) and GL(2,C) objects. To some
extent, the correspondence with standard theory is readable already on the level of
Lagrangians, without manipulations on field equations.
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Matter Lagrangian may be expressed in the following form

Lm (Ψ;A, g) = bg
i
2
gµνeKµ

(
DνΨ̃τKΨ− Ψ̃τKDνΨ

)√
|g|

+ bg
i
2
gµνfKµ

(
DνΨ̃χKΨ− Ψ̃χKDνΨ

)√
|g|

+ bgΨ̃WΨ
√
|g|+ b

2
gµνDµΨ̃DνΨ

√
|g|

(294)

where the matrix W is given by

W =
g

2
gµνeKµfKνI4 −

c

2bg
I4 −

g

2
igµνeKµfLνεKLABΣAB. (295)

Let us quote another, perhaps more intuitive, expression

Lm (Ψ;A, g) = bg
i
2
gµνEKµ

(
DνΨ̃γKΨ− Ψ̃γKDνΨ

)√
|g|

+ bg
i
2
gµνFKµ

(
DνΨ̃KγΨ− Ψ̃KγDνΨ

)√
|g|

+ bgΨ̃WΨ
√
|g|+ b

2
gµνDνΨ̃DµΨ

√
|g|

(296)

where

EAµ :=
1
2

(
eAµ + ηABfBµ

)
, FAµ :=

1
2

(
eAµ − ηABfBµ

)
. (297)

The separate terms are invariant under the local SL(2,C) group. We easily recog-
nise the usual Dirac structure in the first term of (296). The second term corre-
sponds to the Dirac model with the reversed signature. There are also algebraic
mass terms; they may bee non-vanishing even if c = 0. The only feature of (296)
discouraging from the point of view of Dirac theory is the d’Alembert term qua-
dratic is derivatives DµΨ as it leads to second derivatives in field equations. It will
be shown, however, that, surprisingly enough, this term is rather harmless.

The Yang-Mills Lagrangian has the following SL(2,C)-structure

LYM(A, g) =
a

8
R̃ABµνR̃

B
Aκλg

µκgνλ
√
|g| − aT (e)AµνT (f)Aκλgµκgνλ

√
|g|
(298)

+ aGµνGκλg
µκgνλ

√
|g| −

(
a+ 4a′

)
FµνFκλg

µκgνλ
√
|g|.

The correspondence with Poincaré-gauge theories of gravitation (including Ein-
stein-Cartan scheme) becomes more readable when we assume that e, f are co-
tetrads and express (298) in terms of purely spatio-temporal quantities. We obtain
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that

LYM(A, g) =
a

8g2
R(e)κλµνR(e)λκ

µν
√
|g| − a

64g2
R(e)κκµνR(e)λλ

µν
√
|g|

+ 2aR(e)κλµλtκµ
√
|g| − 4atλκS(e)λµνS(f)κµν

√
|g|

+ 4ag2tµνt
µν
√
|g| − 2ag2tµνt

νµ
√
|g| − 2ag2tµµt

ν
ν

√
|g| (299)

+ 2ag2h(e)µνh(f)νµ
√
|g| − 2ag2h(e)µµh(f)νν

√
|g|

−
(
a+ 4a′

)
FµνF

µν
√
|g|

where the shift of indices is meant in the g-sense. In particular, distinction must be
made between t̃µν = eµAf

νA
(
t̃µκtκν = δµν

)
and tµν = gµκgνλtκλ.

We easily recognize in (299) the Yang-Mills term quadratic in curvature Rαβµν
and the Einstein-Cartan-Palatini term linear in Rαβµν . Both occur in Poincaré-
gauge theories of gravitation [2–5, 9]. The main difference is that instead of terms
quadratic in torsion, we have now the term bilinear in translational torsion S(e) and
proper-conformal torsion S(f). There is however a correspondence range, where
S(e) and S(f) become equal, at least approximately. Namely, as we shall see, our
model admits solutions satisfying Einstein-Cartan constrains

fK = ηKMe
M , g = h(e, η) = G(e, f) = t(e, f). (300)

So, restricting our Lagrangians (294), (299) to Einstein-Cartan constraints (300)
(compatible with equations (252), (253), (254) although not implied by them), one
obtains

Lm (Ψ;A, g)|EC = bg
i
2
gµνeKµ

(
DνΨ̃γKΨ− Ψ̃γKDνΨ

)√
|g|

(301)
+
(

2bg2 − c

2

)
Ψ̃Ψ

√
|g|+ b

2
gµνDµΨ̃DνΨ

√
|g|

LYM(A, g)|EC =
a

8g2
RκλµνR

λ
κ
µν
√
|g|+ 2aRµνµν

√
|g|

(302)
− 4aSκµνSκµν

√
|g| − 48ag2

√
|g|.

Lm|EC is a superposition of the usual Dirac and Klein-Gordon Lagrangians. The
algebraic (mass) term exists even if we put c = 0 in the primary Lagrangian (243).
Expression for LYM|EC predicts some correspondence with metric-affine theo-
ries of gravitation. Lagrangians used there are superpositions of terms appear-
ing in (302) (curvature-quadratic, curvature-linear, torsion-quadratic and “cosmo-
logical”). The ratios of constant coefficients in (302) follow from the assumed
U(4, G)-symmetry. In gauge-affine theories their values are not a priori prescribed
and occur as certain control parameters. There are some indication that the first
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term should be relevant for the microscopic gravitation, whereas the linear term is
necessary for the correct macroscopic limit [4, 5, 9].
It is, obviously, not the same to substitute constraints (300) to Lagrangians or to
field equations (problem of Lagrange multipliers). The correct correspondence
analysis should, and just will be, carried over on the level of field equations. Nev-
ertheless, some heuristics, and guidance is also provided, in a concise form, by
Lagrangians themselves.
To express concisely field equations in terms of the SL(2,C)-ruled geometry, we
must introduce auxiliary dynamical quantities. First of all, we express the confor-
mal current of matter in terms of the complete system (263)

Iµ = Aθµ

√
|g|iτA + θAµ

√
|g|iχA +

1
2
θABµ

√
|g|ΣAB

+ θµ

√
|g|1

i
γ5 + θ′µ

√
|g|iI.

(303)

Instead of θ-multiplets we shall also use the following world tensors

θµν := eµA
Aθν ,

µ
νθ := fµAθAν , θκµν := eκAe

B
µθ
A
Bν . (304)

These θ-quantities are quadratic-sesquilinear forms of the field Ψ and for details
see [13], where also the SL(2,C)-expansion of energy-momentum tensors (250),
(251) is presented.
To write down in a concise form the wave equation (252), we have introduced
the unified covariant differentiation ∇[g] (more precisely, we should denote it by
∇[g,A]). When acting on mixed geometric quantities with spatio-temporal and in-
ternal (U(4, G)-ruled) indices, this operator combines, in the Leibniz-rule sense,
the Levi-Civita and the internal A-based covariant differentiations. Restriction of
U(4, G) to its injected subgroups GL(2,C), SL(2,C) gives rise to the internal
covariant differentiation D defined in (273). Combining it with the Levi-Civita
differentiation, we obtain the unified operator D[g,Γ]. But now, an additional floor
of mixed objects appears, namely, quantities with spatio-temporal and capital in-
dices; the latter ones refer to the linear subspace of L(4,C) spanned on γ-matrices.
The operator D[g,Γ] extends in a natural way onto the realm of such objects. When
e is a co-frame, then the pair, e, Γ gives rise to the affine connection Γ(e) defined
in (285), (286). The mixed tensor objects with indices of the type µ, A may be
identified, by means of e, with purely spatio-temporal tensors endowed only with
the µ-type indices. Under this identification, the D[g,Γ]-differentiation of (µ,A)-
objects becomes an operator D[g,Γ(e)] acting on the spatio-temporal tensor fields.
These fields may be also differentiated covariantly in the sense of Γ(e) or {g}.
The corresponding operators D[Γ(e)], D[{g}] differ from D[g,Γ(e)] by certain terms
involving the tensor field K(e).
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Let us summarise: GL(2,C)-invariant covariant differentiationD[g,Γ] is defined as
a Leibniz-rule extension of the following formulae

D[g,Γ]µXν := ∂µXν −Xλ

{
λ
νµ

}
= D[{g}]µXν (305)

D[g,Γ]µΨr := ∂µΨr + ωrsµΨs (306)

D[g,Γ]µY
A := ∂µY

A + ΓABµY B (307)

where

ωrsµ :=
1
2

ΓABµ
(

ΣAB
r
s +

1
2
ηAB

1
i
γ5r

s

)
+ qAµiδrs. (308)

Thus, e.g.,

D[g,Γ]µZ
r
νA = ∂µZ

r
νA + ωrsµZ

s
νA − ΓBAµZrνB −

{
λ
νµ

}
ZrλA. (309)

When e is a co-frame, and g = h(e, η), then (308) becomes the usual relationship
between the bispinor connection ω and the non-holonomic representation ΓABµ of
the Einstein-Cartan-Weyl affine connection Γ(e).
The above way of introducing∇[g],D[g,Γ] as operators combining the {g}-differen-
tiation of world tensors and ∇- or D-differentiation of internal objects, was rather
technical. A rigorous treatment should have used the Cartesian product of two
principle fibre bundles over M : the soldered bundle FM of linear frames and an
abstract, yet non-specified U(4, G)-ruled bundle over M , or its subbundles ruled
by GL(2,C) and SL(2,C). Within this framework, the corresponding connections
and covariant derivatives should be analysed. However, the explicit description of
all appearing objects would enormously extend the treatment without any essen-
tial profit for our subject. Thus, at this stage, we decide to avoid this superfluous
purism.
It is convenient to use the quantities EAµ, FAµ defined in (297), because they are
directly coupled to Dirac matrices

eAµτA + fAµχ
A = EAµγA + FAµ

Aγ.

We shall also use the corresponding contravariant objects

EµA := gµνηABE
B
ν , FµA := gµνηABF

B
ν . (310)

The W -operator (295) may be expressed as follows

W =
g

2
ηABE

A
µE

B
νg
µνI − g

2
ηABF

A
µF

B
νg
µνI

− c

2gb
I + gigµνEAµF

B
νεABCDΣCD.

(311)



Search for the Geometrodynamical Gauge Group. Hypotheses and Some Results 123

After some calculation, which in view of their large volume and rather purely tech-
nical character, do not deserve reporting here, we obtain the GL(2,C)-reduced
form of field equations (252), (253), (254).
When expressed in terms of GL(2,C)-ruled objects, the wave equation (252) be-
comes

iγA
(
EµADµΨ +

1
2

(
D[g,Γ]µE

µ
A

)
Ψ
)

+ iAγ
(
FµADµΨ +

1
2

(
D[g,Γ]µF

µ
A

)
Ψ
)

−WΨ +
1
2g
gµνD[g,Γ]µD[g,Γ]νΨ = 0.

(312)

On the left-hand side we recognise a superposition of two Dirac operators, cor-
responding to mutually opposite normal-hyperbolic signatures (+,−,−,−) and
(−,+,+,+). There is also an algebraic “mass” term WΨ and the second-order
“d’Alembert operator”. The divergence-type corrections have to do with Lie deriva-
tives of the pseudo-Riemannian volume element

√
|g| and are necessary for the

self-adjoint character of the wave equation. By abuse of language, we could
rewrite (312) in the following, suggestive form

iγALEAΨ + iAγLFAΨ−WΨ +
1
2g
gµνD[g,Γ]µD[g,Γ]νΨ = 0 (313)

where the “covariant Lie derivative” operators act on Ψ as on complex density of
weight 1/2, and contain compensating terms responsible for the local GL(2,C)-
invariance. There is also a second-order covariant d’Alembert operator, locally
invariant under GL(2,C). It is seen that some Dirac-like structure emerges from
these equations, but there are two terms perturbing it – an additional Dirac operator
and the second-order terms. As we shall see, they are not so embarrassing as they
could seem.
Expressing the Yang-Mills equations (253) in terms of the GL(2,C)-splitting (291)
we obtain

D[g,Γ]βT (e)Aαβ + geBβR̃B
Aαβ − 2geAβG̃Bαβ = −g

a
Aθα (314)

D[g,Γ]βT (f)A
αβ + gfBβR̃

B
A
αβ + 2gfAβG̃αβ = −g

a
θA

α (315)

D[g,Γ]βR̃
A
B
αβ + 2geBβT (f)Aαβ − 2geAβT (f)B

αβ

(316)
−2gfAβT (e)B

αβ + 2gfBβT (e)Aαβ = −g
a
θAB

α

D[g,Γ]βG̃
αβ − geAβT (f)A

αβ + gfAβT (e)Aαβ = −g
a
θα (317)(

1 +
4a′

a

)
D[g,Γ]βF

′αβ = −q
a
θ′α. (318)
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3.5. Some Special Solutions and Correspondence with Standard Theory

As yet we did not assume non-singularity of e, f , moreover they we free to van-
ish. If they happen to be frames, i.e., det

[
eAµ

]
6= 0, det

[
fAµ

]
6= 0, then the

above equation, involving mixed quantities, may be expressed in terms of world
tensors, free of any internal indices. This form is more convenient when the cor-
respondence with Einstein theory and gauge theories of gravitation is studied. The
resulting equations have a rather complicated form and occupy much place, thus,
we do not quote them here but for certain details cf. [13]. They establish relation-
ships between curvature and torsion tensors R(e), R(f), S(e), S(f) (288), (289),
(290) and their g-covariant derivatives. There are terms characteristic for Einstein,
Einstein-Cartan, and Poincaré-gauge theories of gravitation. To discuss the cor-
respondence in more detail, we begin with the purely geometrodynamical sector,
putting Ψ = 0. Obviously, the wave equation (312) is then trivially satisfied and it
turns out, there are also solutions to (253), (314)–(318). Namely, let us substitute
to equations (314)-(318) the following Einstein Ansatz

fAµ = ηABe
B
µ, tµν = gµν = h(e)µν = h(f)µν (319)

Γ(e)λµν = Γ(f)λµν =
{
λ
νµ

}
, S(e)λµν = S(f)λµν = 0 (320)

Qµ = 0, A′µ = 0. (321)

Let us stress, these constructions are substituted now to the field equations (252)–
(254), not to the variational principle based on (243), (246), (247). Thus, we do
not modify the dynamics, but search for particular solutions.
Equations (317), (318) become identities under substitution (319)–(321), whereas
(314) and (315) both reduce to the same form

Rµν − 12g2gµν = 0 (322)

where Rµν denotes the Ricci tensor of the metric gµν = h(e)µν . If matter is
admitted, then (314) leads to

Rµν − 12g2gµν =
g

a
θµν (323)

the corresponding equation for (315) has θµν on the right-hand side. Using the
Einstein tensor, we can rewrite these equations as follows

Rµν − 1
2
Rgµν = −12g2gµν (324)

Rµν − 1
2
Rgµν = −12g2gµν +

g

a

(
θµν − 1

2
θαα g

µν
)
. (325)
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Finally, equation (316) reduces to

Rαβµ
ν

;ν = −g
2

a
θαβµ (326)

or without matter to
Rαβµ

ν
;ν = 0. (327)

Let us observe that, the last equation is redundant, because it follows from (322) in
virtue of Bianchi identities.
Yang-Mills equations (314)–(318) are compatible with the Einstein Ansatz (319)–
(321) and are reduced by it to (324), (325), i.e., to Einstein equations with the
negative “cosmological constant” −12g2, determined by the coupling constant g
of the U(2, 2)-gauge field. Gravitational constant is given by g/a. If we admitted
in (319)–(321) a non-vanishing torsion S(e), then the resulting equations would
correspond with those of Poincaré-gauge theories of gravitation.
The Ansatz (319)–(321) may be weakened without any violation of the equations
(314)–(318), namely, by admitting arbitrary constant factors at f , g

fAµ = kηABe
B
µ, tµν = kh(e)µν , h(f)µν = k2h(e)µν

Γ(e)λµν = Γ(f)λµν =
{
λ
νµ

}
, gµν = ph(e)µν , Qµ = 0, A′µ = 0.

(328)

Substituting these assumptions to equations (4.16), we obtain

R (h(e))µν −
1
2
h̃(e)αβR(h(e))αβh(e)µν = −12g2h(e)µν . (329)

The factors k, p become essential when we consider the last subsystem (254),
obtained from the variation of the action functional with respect to the metric gµν .
On the right-hand side of Einstein equations (254) we must substitute the total
energy-momentum tensor

Tµν = TYM
µν + Tm

µν .

If there is no matter, Tµν reduces to TYM
µν , and substituting to (254) the weakened

Ansatz (328), we obtain (
lp− 24g2dk

)
h(e)µν = T ′YMµν (330)

where T ′YM is given by

T ′YMµν =
a

8g2p
R(h(e))αβµλR(h(e))βανσh̃(e)λσ

− a

8g2p
R(h(e))αβκλR(h(e))βαρσh̃(e)κρh̃(e)λσh(e)µν

+
8ak
p

(
R(h(e))µν −

1
4
h̃(e)αβR(h(e))αβh(e)µν

)
.

(331)
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Equation (330) impose rather strong algebraic conditions on the curvature tensor of
the metric h(e)µν . A priori it is not clear whether they are compatible with (323).
One can show that, fortunately, there is no contradiction between (323) and (330),
because there exist constant-curvature vacuum solutions. These solutions may be
derived from flat U(4, G)-connections A.
Let us assume that A is flat, i.e., F = DA = 0. Using the expansion (291), we
express the condition F = 0 as follows

deA + ΓAB ∧ eB = 0 (332)

dfA + fB ∧ ΓBA = 0 (333)

R(Γ)AB −
1
4
R(Γ)CCδ

A
B − 2g2eA ∧ fB

(334)
+2g2ηACηBDe

D ∧ fC = 0
1
8
R(Γ)AA − g

2eA ∧ fA = 0 (335)

F ′ = dA′ = 0. (336)

Under the substitution F = 0, Ψ = 0, the Yang-Mills and wave equations (252),
(253) become identities. Thus, the problem reduces to the system consisting of
(332)–(336) and Einstein equations (254). There are geometrically distinguished
solutions which provide a natural basis for the correspondence analysis of (252)–
(254). They are based on the weakened Einstein Ansatz (328). Substituting it into
(332)–(336), we observe that (332), (333), (335), (336) become identities. More
precisely, it is sufficient to assume that

fAµ = kηABe
B
µ, gµν = ph(e)µν , Qµ = 0, A′µ = 0. (337)

Then (332) and (333) just imply that Γ(e) = Γ(f) = {g} = {h(e)}. And finally,
equation (334) simply states that (M, g) is a constant-curvature space.
The U(2, 2)-flatness condition (332)–(336) reduces under the Ansatz (337) to the
following equation

R(g)αβµν =
4g2k

p
(gαµgβν − gανgβµ) . (338)

This means that (M, g) is a constant-curvature space. It is conformally-flat, and
this link between conformal flatness of g and the U(2, 2)-flatness ofA is rather nat-
ural, if we remember that SU(2, 2) is the universal covering group of the conformal
group CO(1, 3).
The equation (338) implies that

R(g)µν −
1
2
R(g)gµν = −12g2k

p
gµν . (339)
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This is consistent with (330) and (332)–(336) if and only if

lp = 24g2dk. (340)

It is a dissatisfying redundancy of the model, that the Einstein equations emerge
from (252)–(254) in two different forms, with independent constants. One can
avoid this disadvantage by following the Palatini scheme, i.e., putting d = 0, l = 0.
The metric tensor g preserves then its status of independent dynamical variable,
however, it is no longer represented by a separate term in Lagrangian. Instead, it
enters algebraically the matter and Yang-Mills Lagrangian. The above integration
constants, p, k are then completely arbitrary.
The presented solutions of geometrodynamical equations provide a convenient
framework for investigating the Dirac limit of our wave equation. The most con-
venient choice of Ansatz constants is k = 1, corresponding to the balanced bite-
trad (e, f). Let us mention, incidentally, there are also solutions corresponding to
k = 0. They describe a geometric background for the strange world admitting
only one kind of Weyl spinors. The trivial geometrodynamical vacuum A = 0 is
incompatible with any concept of spinors.
Let us now go back to the wave equation (313). Due to the small value of the
gravitational constant, geometrodynamical sector is weakly sensitive to the mate-
rial one. Thus, in a small spatio-temporal scale of elementary particle physics, it
is a satisfactory approximation to consider the wave dynamics (313) as played on
the fixed geometric arena provided by the above solutions (337), (338) without any
feedback through geometry.
Let us substitute to (313) the Ansatz

fAµ = ηABe
B
µ, gµν = h(e)µν = ηABe

A
µe
B
ν . (341)

Therefore
EAµ = eAµ, FAν = 0.

The Ansatz (341) reduces the wave equation to

iγA
(
eµADµΨ +

1
2

(
D[g,Γ]µe

µ
A

)
Ψ
)
−4bg2 − c

2bg
Ψ+

1
2g
gµνD[g,Γ]µD[g,Γ]νΨ = 0.

The divergence correction term has the same status as in (312). Following (313),
we can also use the symbolic representation

iγALeAΨ− 4bg2 − c
2bg

Ψ +
1
2g
gµνD[g,Γ]µD[g,Γ]νΨ = 0. (342)

It is easy to show that

D[g,Γ]µe
µ
A = −K(e)αµαeµA (343)
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thus,

eµAiγA
(
Dµ −

1
2
K(e)αµα

)
Ψ− 4bg2 − c

2bg
Ψ +

1
2g
gµνD[g,Γ]µD[g,Γ]νΨ = 0.

If we assume in addition that Γ(e) is an Einstein-Cartan connection, then

K(e)αµα = −2Sαµα. (344)

Finally, if Γ is a Levi-Civita connection, or, at least, if S is trace-less,

eµAiγADµΨ− 4bg2 − c
2bg

Ψ +
1
2g
gµνD[g,Γ]µD[g,Γ]νΨ = 0. (345)

In the specially-relativistic limit, when eµA = δµA, Γ = 0, gµν = ηµν , this
equation becomes as follows

iγµ∂µΨ− 4bg2 − c
2bg

Ψ +
1
2g
∂µ∂µΨ = 0. (346)

If our model is to be viable, this equation must somehow correspond with the Dirac
equation, in spite of the term with second derivatives.
Let us consider, more generally, the following specially-relativistic Klein-Gordon-
Dirac equation

V iγµ∂µΨ−WΨ− U∂µ∂µΨ = 0 (347)
which is derivable from the Lagrangian

L = V
i
2

(
Ψ̃γµ∂µΨ− ∂µΨ̃γµΨ

)
−W Ψ̃Ψ + U∂µΨ̃∂µΨ (348)

where V , W , U are real constants, and Minkowskian coordinates are used. Obvi-
ously, equation (347) does not correspond to any irreducible representation of the
Poincaré group, and in this sense it is not admitted by the Wigner-Bargmann clas-
sification as a relativistic wave equation for elementary particles. Nevertheless,
there are no principal obstacles against considering a continuous dynamical sys-
tem ruled by (347). A more detailed analysis, together with quantization attempts,
is presented in [14]. Here we restrict ourselves to an elementary analysis of the
physical viability of (347).
Due to linearity of (347), one can expect solutions in the form of continuous su-
perpositions of harmonic plane waves. Equation (347) yields, under substitution
of

Ψ(x) = ϕ exp (−ipµxµ)
that

γµpµϕ = mϕ (349)
where

m2 = p2 =
1

2U2

(
2UW + V 2 ±

√
V 4 + 4UWV 2

)
. (350)
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Thus, the general solution of (347) is a superposition of two Dirac waves with
masses m−, m+ given by (350). In general, when no restrictions on coefficients
U , W , V are imposed, tachyonic situations p2 < 0 are possible. To avoid this and
warrant real non-negative solutions for p2, we must assume

V 2 + 4UW ≥ 0. (351)

The appearance of two mass shells in the general solution of (347) need not be so
embarrassing as it could seem, and namely, for the following reasons:

i) If the splitting of masses m+ − m− is large, than, in usual conditions, it
may be difficult to excite the m+-states, because the frequency spectrum of
external perturbations will have to contain frequencies of the order (m+ −
m−)c2/h. For example, if U → 0, then m− → |W |/|V |, m+ → ∞
(compare this with the idea of the Pauli-Villars-Rayski regularization).

ii) It is not excluded that superposition of states with two masses might be just
desirable, for example, one could try to explain in this way a mysterious
kinship between heavy leptons and their neutrions, or the corresponding
pairing between quarks. If there is no algebraic term,W = 0, thenm− = 0,
m+ = |V/U |, thus, in spite of the purely differential character of (347),
massive states appear, and are paired with massless ones.

iii) For special values of U , V ,W namely, when V 2 +4UW = 0, the mass gap
vanishes, m− = m+ = |W/U |, and (347) exactly reduces to usual Dirac
equation.

Comparing equations (346), (347) we obtain that

V = 1, W =
4bg2 − c

2bg
, U = − 1

2g
(352)

and the Klein-Gordon-Dirac equation (347) is controlled by two parameters g and
c/b. Therefore, one of masses in the doublet will vanish when c = 4bg2 and the
non-vanishing partner equals m+ = 2|g|.
The mass splitting vanishes when c = 3bg2. The Klein-Gordon-Dirac equa-
tion (347) reduces then to usual Dirac equation, andm− = m+ = |g|. The general
formula for the mass doublet reads

m2
∓ =

c

b
− 2g2

(
1±

√
c

bg2
− 3

)
. (353)

It is seen that below the threshold c/b = 3g2 there is no correspondence with Dirac
equation unless we accept complex masses, tachyons and decays. At c/b = 3g2

there is a kind of “phase transition”, and, due to interaction between fields Ψ and
A, the effective Dirac particle of mass |g| emerges. When c/b increases above the
threshold, the mass splitting appears and the wave field Ψ becomes a superposition
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of Dirac waves with masses m± given by (353). The quadrat-of-mass gap

∆(m2) = 4|g|
√
c

b
− 3g2 (354)

becomes negligible for small coupling constants. Some primary “mass” c/b is nec-
essary if the effective Dirac behaviour is to emerge from the original Klein-Gordon
model due to the spontaneous breaking of the U(2, 2)-symmetry to SL(2,C). It is
not excluded that extending the internal symmetry from U(2, 2) to GL(4,C) we
could obtain a model where the effective Dirac equation with mass would appear
even in the absence of the algebraic term (c/2)Ψ̃Ψ

√
|g| in the Klein-Gordon La-

grangian for Ψ. The theory invariant under GL(4,C) involves more degrees of
freedom, because Gr̄s becomes a dynamical quantity.

Final Remarks

We were motivated by some physical ideas concerning the status of nonlinear-
ity in fundamental wave equations appearing in quantum theory of strongly con-
densed field-particles systems. In fundamental problems one must take relativis-
tic phenomena into account. Even in situations where they are not quantitatively
very strong, they strongly influence certain qualitative aspects. The nonlinearity
we mean is usually implied by strong and non-commutative symmetry groups.
When we deal with relativistic theory of phenomena in which particles with half-
integer spin appear, it is just necessary to introduce additional geometric objects,
well-known in mechanics of structured continua, like the non-holonomic fields of
frames (cotetrad fields). And then this way the strong nonlinearity appears. This
is because then by the very geometric nature of used fields, groups of conformal
symmetry and general covariance appear. In spite of our dealing with the very fun-
damental physical fields, the mathematical methodology of our treatment is in a
sense common with characteristic nonlinearities appearing in elasticity and theory
of shells and membranes.
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