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Abstract. This paper presents the formalism of symplectic supermanifolds
with a non-homogeneous symplectic form and their prequantization.

1. Supermanifolds

The idea behind a supermanifold is that one wants to have anticommuting vari-
ables, i.e., a kind of “numbers” such that ξη = −ηξ. In this context it is customary
to denote ordinary/commuting (real) “numbers” by Latin characters and the anti-
commuting kind by Greek characters. One of the ideas to create such “numbers”
is to replace the standard real line R by a graded commutative ring A = A0 ⊕A1

and to take the commuting “numbers” xi in the even part: xi ∈ A0 and to take the
anticommuting variety ξj in the odd part: ξj ∈ A1. The basic example of such a
ring is the exterior algebra of an infinite dimensional (real) vector space E

A =
∧
E =

( ∞⊕
k=0

∧
2kE

)
⊕
( ∞⊕
k=0

∧
2k+1E

)
.

The first step in creating a theory of differential geometry based on these com-
muting and anticommuting “numbers,” usually called even and odd coordinates, is
to define what smooth functions are. When one tries to define the derivative of a
function, one encounters immediately two problems: i) the most natural topology
on the graded ring A is not Hausdorff making uniqueness of limits questionable
and ii) due to nilpotent elements in A even a difference quotient is problematic.
The solution adopted in [3] is based on the following two observations.

Lemma 1. Let U ⊂ Rp be a convex open set and let f : U → Rd be a function of
class C1. Then the function g : U2 → End(Rp,Rd) ∼= Rpd defined by

g(x, y) =
∫ 1

0
f ′
(
sx+ (1− s)y

)
ds
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is continuous and satisfies

for all x, y ∈ U : f(x)− f(y) = g(x, y)·(x− y) .

Theorem 1. Let U ⊂ Rp be a convex open set and let f : U → Rd be any function.
If there exists a continuous function g : U2 → End(Rp,Rd) ∼= Rpd satisfying

f(x)− f(y) = g(x, y)·(x− y) for all x, y ∈ U
then f is of class C1 with f ′(x) = g(x, x).

It follows that functions of classC1 can be defined without talking about difference
quotients or limits. Only the topology is needed because g need to be continuous.
Note that it is never required that g is unique (in general it will not be), but that the
diagonal g(x, x) is unique. Using this idea, one can show that smooth functions in
p even coordinates and q odd coordinates (x1, . . . , xp, ξ1, . . . , ξq) ∈ Ap0 × A

q
1 are

given as ordinary smooth functions of real variables (x1, . . . , xp) and polynomials
of degree at most one in each of the ξj

C∞(Ap0 ×A
q
1) ∼= C∞(Rp)⊗

∧
Rq .

Once one has the notion of smooth functions, it is fairly straightforward to develop
differential geometry: manifolds, tangent bundles, differential forms and so forth.
The “only” precaution one has to take is that when one interchanges to items, an
additional sign appears when it contains two odd variables. For instance, if ξ and η
are two odd coordinates, we have the one-forms dξ and dη, and a two-form dξ∧dη,
but also the two-forms dξ ∧ dξ and dη ∧ dη, simply because when we interchange
dξ with dξ in this wedge product, two signs appear: one from interchanging two
one-forms and one from interchanging the odd coordinates ξ and ξ. On the other
hand, if x is an even coordinate, we still have dx ∧ dξ = −dξ ∧ dx.

2. Symplectic Supermanifolds

If we try to mimick the symplectic geometry, it seems reasonable to look for
closed non-degenerate two-forms, where non-degenerate means that the induced
map from the tangent space to the cotangent space is a bijection. So let us look at
an example.

Example 1. On the manifold M = A2
0 × A2

1 with two even and two odd coordi-
nates: (x, y, ξ, η) ∈ A2

0 ×A2
1 we consider the two-form

ω = dx ∧ dy + dξ ∧ dη + dx ∧ dξ .

It is straightforward to check that this is a closed and non-degenerate two-form.
We also consider the two vector fields X and Y defined as

X = 2y
∂

∂x
− 2y

∂

∂η
and Y = −ξ ∂

∂ξ
+ η

∂

∂η
+ ξ

∂

∂y
·
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These two vector fields satisfy the relations

ι(X)ω = d(y2) and ι(Y )ω = d(ηξ)

which means that these two vector fields are (globally) hamiltonian. A simple
computation shows that their commutator is given as

[X,Y ] = −2ξ
∂

∂x
− 2y

∂

∂η
− 2ξ

∂

∂η
·

But ι([X,Y ])ω = d(yξ)+2ξ dξ is not even closed. It follows that the commutator
of two globally hamiltonian vector fields is not even a locally hamiltonian vector
field.

In view of the above example, the question is: should we change the definition of
(globally/locally) hamiltonian vector field, should we require that the closed and
non-degenerate two-form is also homogeneous or . . . ? The solution I adopt in [2]
is that we should change the definition of non-degeneracy! Any differential k-form
α splits into an even (α0) and odd (α1) part: α = α0 + α1. To see whether a form
is even or odd, one just adds the number of odd coordinates in α to the degree k
and takes the result modulo 2. For instance dξ ∧ dξ is even, but dx ∧ dξ is odd.

Definition 1. A closed two-form ω = ω0 + ω1 on M is said to be symplectic if for
all m ∈M we have

ker(ω0 : Tm → T ∗m) ∩ ker(ω1 : Tm → T ∗m) = {0} .

Remark 1. If a closed two-form ω satisfies the condition ker(ω : Tm → T ∗m) =
{0}, i.e., if it is non-degenerate in the classical sense, then it is symplectic in the
sense of the above definition.

Definition 2. A vector fieldX on a symplectic manifold (M,ω) is locally/globally
Hamiltonian if the two one-forms

ι(X)ω0 and ι(X)ω1

are closed/exact.

Theorem 2. The commutator of two locally hamiltonian vector fields is globally
hamiltonian.

Definition 3. The Poisson algebra P of a symplectic manifold is given by

P = {(f0, f1) ∈ C∞(M)2 ; ∃X : ι(X)ω0 = −df0 and ι(X)ω1 = −df1 } .

Remark 2. With this definition we abandon the idea that the Poisson algebra
is/should be the set of smooth functions on the (symplectic) manifold. It becomes
a subset of the set of all pairs of smooth functions. And indeed, it is fairly easy to
construct symplectic manifolds for which P is a proper subset the set of all pairs
of smooth functions. Even the idea that the map P → C∞, (f0, f1) 7→ f0 + f1
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is surjective turns out to be false in general. However, in the case the symplectic
form is homogeneous (either ω0 or ω1 zero), the condition of being symplectic
becomes the classical one of non-degeneracy and for the Poisson algebra we can
“forget” about the component (in the pair) corresponding to the zero two-form. For
homogeneous symplectic forms we thus recover the classical Poisson algebra.

Definition 4. For an element f = (f0, f1) ∈ P , the unique vector field X sat-
isfying ι(X)ωα = −dfα is called the Hamiltonian vector field of f and de-
noted as Xf . The Poisson bracket {f, g} of two elements f, g ∈ P is defined
as {f, g}α = Xfgα.

Theorem 3. The Poisson bracket satisfies the conditions of a super Lie algebra
structure and the map f 7→ Xf is an even homomorphism of (super) Lie algebras.

Definition 5. A symmetry group of a symplectic (super)manifold is a smooth left-
action Φ : G ×M → M of a Lie supergroup G on M preserving the symplectic
form

Φ∗gω = ω, g ∈ G
where Φg : M →M denotes the map m 7→ Φ(g,m).

Definition 6. A momentum map for a symmetry group G with Lie algebra g of a
symplectic manifold (M,ω) is a map J : M → g∗ satisfying the condition

ι(vM )ωα = −d〈v |Jα 〉, v ∈ g

where vM denotes the fundamental vector field onM associated to the Lie algebra
element v.
If there exists a momentum map for the symmetry groupG, one says that the action
is (weakly) hamiltonian. The action is said to be strongly hamiltonian if the map
g→ P , v 7→ 〈v |J 〉 is a Lie algebra morphism.

Theorem 4. Let G be a Lie group with Lie algebra g, let µo ∈ g∗ be a fixed
dual element, let Oµo be its coadjoint orbit and let ωKKS be the Kirillov-Kostant-
Souriau two-form on Oµo defined by

−ι(v∗)ι(w∗)ωKKSµ = 〈 [v, w] |µ〉 .

Then ωKKS is symplectic but not necessarily non-degenerate and the identity map
J : Oµo → g∗, J(µ) = µ is a strongly hamiltonian momentum map.

3. Non-Super Prequantization

For non-super symplectic manifolds (M,ω) the notion of prequantization comes
in two flavors, one by B. Kostant and one by J.-M. Souriau. According to Kostant
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one should look for a complex line bundle π : L → M over M with a (linear)
connection∇ whose curvature is the symplectic form

curv(∇) = −i~−1 · ω

and a compatible hermitian inner product (on L). I inserted the physical constant ~
(without referring to it in the text) to show how it enters in the formalism because
one application of geometric (pre)quantization is in physics (where the name quan-
tization comes from).
According to Souriau one should look for a principal S1-bundle π : Y → M over
M equipped with a one-form α satisfying three conditions

1. α is invariant under the S1-action
2. dα = π∗ω

3.
∫
S1-orbit α = 2π~.

Souriau’s formulation of prequantization can be cast in the form of the quest for a
principal S1-bundle with connection, but some care has to be taken to do so. To
better understand the difficulty, we start with a simple observation. Let d > 0 be
a fixed positive real number, let M be a manifold, let θ be a one-form on M , let
G = R/dZ be the real line modulo d and let x be a coordinate (modulo d) on G.
Then ∂x is a left-invariant vector field on G and

α̂ =
(
θ + dx

)
⊗ ∂x

is a connection one-form on the principal G-bundle M ×G→M . Its curvature is
given by

curv(α̂) = dθ ⊗ ∂x .
This situation can be generalized in the sense that one can specify (to a certain
extent) the curvature form as stated in the next theorem.

Theorem 5. Let ω be a closed two-form on M whose group of periods Per(ω) is
defined as

Per(ω) =
{∫

γ
ω ; γ a two-cycle on M

}
.

Then there exists a principal R/dZ-bundle π : Y →M with one-form α such that
α̂ = α⊗ ∂x is a connection one-form whose curvature is ω ⊗ ∂x if and only if the
group of periods Per(ω) is contained in dZ. If Y exists, we have

∫
S1-orbit α = d.

Corollary 1. A couple (Y, α) is a prequantization according to Souriau if and only
if α̂ = ~−1 ·α⊗∂ϕ is a connection one-form on Y whose curvature is ~−1 ·ω⊗∂ϕ,
where ϕ is an angle coordinate modulo 2π on the circle S1 (i.e., eiϕ ∈ S1).

With this corollary it is easy to see the link between the two flavors of prequuan-
tization: the complex line bundle L → M is the line bundle associated to the
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principal S1-bundle Y → M by the (anti-)tautological representation of S1 ⊂ C
on C defined as ρ(eiϕ)z = e−iϕ · z. Taking the infinitesimal form of this repre-
sentation gives us the curvature form of the induced linear connection ∇ from the
principal connection α̂ as

curv(∇) = Teρ curv(α̂) = −i · ~−1 · ω .

According to Theorem 5 a prequantization does not always exist, the condition for
existence being that the group of periods Per(ω) is included in 2π~Z, or equiva-
lently, that Per(~−1 · ω) is included in 2πZ. But this is exactly the condition that
~−1 ·ω represents an integral class in cohomology, the condition well known from
Kostant’s flavor of prequantization.
In [1] I have argued that it is a good idea to consider prequantization as being part
of classical mechanics, provided one relaxes condition 3 of Souriau to

3′.
∫
S1-orbit α = const 6= 0.

The reasons for doing so are beyond the scope of this talk, but I will adopt this
viewpoint in the next section when prequantizing symplectic supermanifolds.

4. Prequantization of Symplectic Supermanifolds

Definition 7. A prequantization of a symplectic (super)manifold (M,ω) is a prin-
cipal (A0/dZ)×A1-bundle π : Y →M with a one-form α satisfying the following
three conditions:

1. α is invariant under the (A0/dZ)×A1-action
2. dα = π∗ω

3.
∫
A0/dZ-orbit α = d = const 6= 0.

A necessary and sufficient condition for the existence of a prequantization is that
the group Per(ω0) of periods of ω0 (the even part of the symplectic form) is con-
tained in dZ. If we do not specify the positive real number d > 0 in advance, the
necessary and sufficient condition for existence is that the group of periods is a
discrete subgroup of R.

Remark 3. If e0, e1 is the appropriate basis for the Lie algebra of (A0/dZ)×A1,
then α0⊗ e0 +α1⊗ e1 is a connection one-form with curvature ω0⊗ e0 +ω1⊗ e1.

Theorem 6. Let π : Y → M be a prequantization of the symplectic manifold
(M,ω) and let α be the “connection” one-form. For each f = (f0, f1) ∈ P there
exists a unique vector field ηf on Y satisfying the following conditions (some of
which are consequences of others):

1. ηf projects to the hamiltonian vector field Xf : π∗ηf = Xf

2. ηf preserves the one-form α: Lηf
α = 0
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3. contraction of ηf with α yields f : ι(ηf )α0/1 = π∗f0/1.

Furthermore, the map f 7→ ηf is an isomorphism of super Lie algebras from the
Poisson algebra P to the α-preserving vector fields on Y (meaning in particular
that every vector field on Y preserving α is necessarily of the form ηf for some f
in the Poisson algebra P).

Question 1. I have presented prequantization of a symplectic supermanifold in the
flavor of Souriau, so what about Kostant’s version? The problem is that there is no
representation of (A0/dZ)×A1 on a finite dimensional super vector space that is
not trivial on theA1-part. This means that the best we can do is to look for a “line”
bundle L→M with a connection∇ whose curvature is −i~−1 · ω0.
But if we do so, then the obvious question becomes whether the absence of the
odd part of the symplectic form in line bundle prequantization has serious reper-
cussions. The answer is that I don’t know!
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