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Abstract. Physical properties of gravitational waves, belonging to the larger
class of exact solutions of Einstein field equations which are invariant for a
non-Abelian two-dimensional Lie algebra of Killing fields, are described. It
is shown that in the would be quantum theory of gravity they correspond to
spin − 1 massless particles. The gravitational interaction of two pencils of
light is analyzed.

Introduction

The aim of this talk is to illustrate some interesting and, in a sense, surprising
physical properties of special solutions of Einstein field equations, belonging to
the large class of Einstein metrics invariant for a non-Abelian two-dimensional Lie
algebra of symmetries, which throw new light on the following problem.
A long time ago Tolman, Ehrenfest and Podolsky [30] and later Wheeler [33] ana-
lyzed the gravitational field of light beams and the corresponding geodesics in the
linear approximation of Einstein equations. They discovered that null rays behave
differently according whether they propagate parallel or antiparallel to a steady,
long, straight beam of light, but they did not provide a physical explanation of this
fact. The result was clarified in part by Faraoni and Dumse [14] using an approach
based on a generalization to null rays of the gravitoelectromagnetic Lorentz force
of linearized gravity. They also extended the analysis to the realm of exact pp-wave
solutions of the Einstein equations.
Since the problem of the gravitational interaction of two photons is still unsolved, it
appears necessary to take into full account the nonlinearity of Einstein’s equations
when studying the generation of gravitational waves from strong sources [12, 29].
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On the other hand, some decades ago, Belinski and Zakharov have shown [4] that
there exist metrics such that the corresponding vacuum Einstein field equations
reduce to a system of non-linear partial differential equations, whose generalized
Lax form is characteristic for integrable systems. Then, by using a suitable gener-
alization of the Inverse Scattering Transform, they were able to find solitary waves
solutions.
A geometric inspection of mentioned metrics shows that they are invariant under
translations along the x, y-axes, i.e., they admit two Killing fields, ∂x and ∂y, clos-
ing on an Abelian two-dimensional Lie algebra A2. Moreover, the distribution D
generated by ∂x and ∂y is two-dimensional and the distribution D⊥ orthogonal to
D is integrable and transversal to D.
Since a two-dimensional Lie algebra is either Abelian (A2) or non-Abelian (G2), it
has been natural to consider [24–26] the problem of characterizing all gravitational
fields g admitting a Lie algebra G of Killing fields such that

I the distribution D, generated by vector fields of G, is two-dimensional.
II the distribution D⊥, orthogonal to D is integrable and transversal to D.

The condition of transversality can be relaxed [9,10], so that in order to distinguish
the different cases, the notation (G, r) is used. Metrics satisfying the conditions I
and II are called of (G, 2)-type. Metrics satisfying conditions I and II, except the
transversality condition, are called of (G, 0)-type or of (G, 1)-type according to the
rank of their restriction the leaves of D which are also called Killing leaves.
All the possible situations corresponding to a two-dimensional Lie algebra of iso-
metries, are described by the following Table 1 in which the cases indicated with
bold letters are essentially solved [2, 9, 10, 24–27] where a non integrable two-

Table 1

D⊥, r = 0 D⊥, r = 1 D⊥, r = 2
G2 integrable integrable integrable
G2 semi-integrable semi-integrable semi-integrable
G2 non-integrable non-integrable non-integrable
A2 integrable integrable integrable
A2 semi-integrable semi-integrable semi-integrable
A2 non-integrable non-integrable non-integrable

dimensional distribution has been called semi-integrable if it is part (i.e., a suitable
restriction) of a three-dimensional integrable distribution.
The study of A2-invariant Einstein metrics goes back to Einstein and Rosen [13],
Kompaneyets [16], Geroch [15], Belinsky, Khalatnikov, Zakharov [3, 4], so that
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some exact solutions already known in the literature [28] have been rediscovered.
Nevertheless, the geometric approach allows to perform in a natural way the choice
of coordinates, i.e., the coordinates adapted to the symmetries of the metrics, even
if they do not admit integrable D⊥ distribution. Usually, the standard techniques
to find exact solutions assume, from the very beginning, that there exist natural
vector fields, surfaces forming, which simplify the choice of the coordinates sys-
tem. These assumptions are strong topological constraints on the space-time. The
method developed in [2, 9, 10, 24–27] can be applied also when such topological
assumptions do not hold.
The paper is organized as follows. In Section 1 gravitational fields invariant for a
non Abelian two-dimensional Lie algebra, when the commutator of generators of
the Lie algebra is of light-type, are characterized from a geometric point of view.
In Section 2, the canonical and the Landau energy-momentum pseudo-tensors are
introduced and a comparison with the linearized theory is performed. The role of
(realistic) sources for such gravitational waves is also described. Eventually, the
analysis of the polarization leads to the conclusion that these fields are spin − 1
gravitational waves. In Section 3, spin − 1 and spin − 2 gravitational waves are
compared from a gravitoelectromagnetic perspective. Section 4 is devoted to the
analysis of the photon-photon gravitational interaction.

1. Geometric Aspects

Let g be a metric on the space-timeM and G2 one of its Killing algebras whose
generators X , Y satisfy [X,Y ] = sY , s = 0, 1. The Frobenius distribution D
generated by G2 is two-dimensional and in the neighborhood of a non-singular
point adapted coordinates (x, y, p, q) exist ([9, 10, 24–27]) such that

X =
∂

∂p
, Y = exp(sp)

∂

∂q
·

In these coordinates, the general solution of vacuum Einstein equations, in the case
in which the Killing field Y is of light type, is given by

g = 2f(dx2 ± dy2) + µ[(w(x, y)− 2sq)dp2 + 2dpdq] (1)

where µ = AΦ +B with A,B ∈ R, Φ(x, y) is a non-constant harmonic function,
f = (∇Φ)2

√
|µ|/µ, w(x, y) is the solution of the Euler-Darboux equation

∆±w + (∂x ln |µ|)∂xw ± (∂y ln |µ|)∂yw = 0

where ∆± is the Laplace (d’Alembert) operator in the (x, y)-plane. Metrics (1)
are Lorentzian if the orthogonal leaves are conformally Euclidean, i.e., the positive
sign is chosen, and Kleinian otherwise. Only the Lorentzian case will be analyzed
and these metrics will be called of (G2, 2)-isotropic type.



On the Polarization of Gravitational Waves 323

In the particular case s = 1, f = 1/2 and µ = 1, the above (Lorentzian) metrics
are locally diffeomorphic [7] to a subclass of the vacuum Peres solutions [20, 28],
that for later purpose we rewrite in the form

g = dx2 + dy2 + 2dudv + 2(ϕ,xdx+ ϕ,ydy)du. (2)

The correspondence between (1) and (2) depends on the special choice of the func-
tion ϕ(x, y, u), which, in general, is harmonic in x and y. In our case

x→ x, y → y, u→ u, v → v + ϕ(x, y, u), h = ϕ,u.

In the case µ = const, the Euler-Darboux equation reduces to the Laplace equa-
tion. For µ = 1, in the harmonic coordinates system (x, y, z, t) defined in [6], the
above Einstein metrics take the particularly simple form

g = 2f(dx2 + dy2) + dz2 − dt2 + d(w)d(ln |z − t|). (3)

This shows that, when w is constant, the Einstein metrics given by equation (3) are
static and, under the further assumption Φ = x

√
2, they reduce to the Minkowski

one. Moreover, when w is not constant, gravitational fields (3) look like a distur-
bance propagating at light velocity along the z direction on the Killing leaves. In
the following we will only consider the case Φ = x

√
2.

More precisely, the wave character and the polarization of gravitational fields (2)
can be checked by using the covariant Pirani’s criterion. To use this criterion the
Weyl scalars must be evaluated according to the Petrov-Penrose classification [19,
21].
To perform the Petrov-Penrose classification, one has to choose a tetrad basis with
two real null vector fields and two real spacelike (or two complex null) vector
fields. Then, according to the Pirani’s criterion, if the metric belongs to type N of
the Petrov classification, it is a gravitational wave propagating along one of the two
real null vector fields. Since ∂u and ∂v are null real vector fields and ∂x and ∂y are
spacelike real vector fields, the above set of coordinates is the right one to apply
for the Pirani’s criterion.
Since the only nonvanishing components of the Riemann tensor, corresponding to
the metric (2), are

Riuju = −∂2
ij∂uϕ, i, j = x, y

this gravitational fields belong to Petrov type N [11, 34]. Then, according to the
Pirani’s criterion, the metric (2) does indeed represent a gravitational wave propa-
gating along the null vector field ∂u.

2. Physical Properties

In the following, physical properties of metrics (1) will be analyzed only in the case
of Lorentzian signature. In previous section, the wavelike nature of gravitational
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fields (1) has been checked [6] by using covariant criteria. Now, we will shortly
review the most important properties of these waves which will turn out to have
spin− 1.
Let us remark that the definition and the meaning of spin or polarization for a
theory, such as general relativity, which is non-linear and possesses a much big-
ger invariance than just the Poincaré one, deserve a careful analysis. It is well
known that the concept of particle, together with its degrees of freedom like the
spin, may be only introduced for linear theories. In these theories, when Poincaré
invariant, the particles are classified in terms of the eigenvalues of two Casimir op-
erators of the Poincaré group, P 2 and W 2 where Pµ are the translation generators
and Wµ = 1

2εµνρσP
νMρσ is the Pauli-Ljubanski polarization vector with Mµν

Lorentz generators. Then, the total angular momentum J = L + S is defined in
terms of the generatorsMµν as J i = 1

2ε
0ijkMjk. The generators Pµ andMµν span

the Poincaré algebra, ISO(3, 1). When P 2 = 0, W 2 = 0, W and P are linearly
dependent of each other Wµ = λPµ; the constant of proportionality λ is given by
λ =
−→
P ·
−→
J /P0 and defines the helicity for massless particles like photons.

Let us turn now to the gravitational fields represented by equation (3). As it has
been remarked, they represent gravitational waves moving at the velocity of light,
that is, in the would be quantised theory, particles with zero rest mass. Thus, if
a classification in terms of Poincaré group invariants could be performed, these
waves would belong to the class of unitary (infinite-dimensional) representations
of the Poincaré group characterized by P 2 = 0, W 2 = 0. Recall that, in order
for such a classification to be meaningful P 2 and W 2 have to be invariants of the
theory. This is not the case for general relativity, unless we restrict to a subset of
transformations selected for example by some physical criterion or by experimen-
tal constraints. For the solutions of the linearized vacuum Einstein equations the
choice of the harmonic gauge does the job [32]. There, the residual gauge freedom
corresponds to the sole Lorentz transformations.

2.1. The Standard Linearized Theory

The standard analysis of linearized theory and the issue of the polarization will
be analyzed. In particular, the usual transverse-traceless gauge in the linearized
vacuum Einstein equations and the (usually implicit) assumptions needed to reduce
to this gauge play an important role: the generality of the usual claim “the graviton
has spin− 2” (that, of course, is strictly related to the possibility of achieving this
special gauge in any “reasonable” physical situation) is strictly related to these
assumptions.
The gravitational field is said to be weak (in M ′) if there exists a (harmonic) co-
ordinates system and a region M ′ ⊂ M of space-time in which the following
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conditions hold

gµν = ηµν + hµν , |hµν | � 1, |hµν,α| � 1. (4)

As it is known, in the weak field approximations in a harmonic coordinates system
the Einstein equations read

�hµν = 0. (5)
The choice of the harmonic gauge plays a key role in deriving equation (5). No
other special assumption either on the form or on the analytic properties of the
perturbation h has been done. It is commonly believed that, with a suitable gauge
transformation preserving the harmonicity of the coordinate system and the “weak
character” of the field, one can always kill the “spin− 1” components of the grav-
itational waves. However, even if not explicitly declared, the standard textbook
analysis of the polarization is performed for globally square integrable solutions
of the wave-equation (5) (that is, solutions which are square integrable everywhere
on M ) but, as we will see in the following, some very interesting solutions do not
belong to this class.
What is lacking in our case is, obviously, the global square integrability due to
the presence of the harmonic function solution of the two-dimensional Laplace
equation. Therefore, non-globally square integrable spin − 1 perturbations are
not pure gauge because they cannot be killed by infinitesimal diffeomorphisms.
Even if global square integrability is lacking, there exist solutions of this form that
far away the singularities are perfectly well-behaved. In other words, spin − 1
perturbations which are square integrable on a submanifold M ′ ⊂M of the whole
spacetime can be found: thus, in order to exist, spin − 1 perturbations necessarily
need some singularities and/or some region with non trivial topology.
A transparent method to determine the spin of a gravitational wave is to look at its
physical degrees of freedom, i.e., the components which contribute to the energy.
One should use the Landau-Lifshitz (pseudo)-tensor tµν which, in the asymptoti-
cally flat case, agrees with the Bondi flux at infinity [8].
It is worth to remark that the canonical and the Landau-Lifchitz energy-momentum
pseudo-tensors are tensors for Lorentz transformations. Thus, any Lorentz trans-
formation will preserve the form of these tensor; this allows to perform the anal-
ysis according to the Dirac procedure. A globally square integrable solution hµν
of the wave equation is a function of r = kµx

µ with kµkµ = 0. With the choice
kµ = (1, 0, 0,−1), we get for the energy density t00 and the energy momentum t30
the following result

16πt00 =
1
4

(u11 − u22)2 + u2
12, t00 = t30

where uµν ≡ dhµν/dr. Thus, the physical components which contribute to the
energy density are h11 − h22 and h12. These amplitudes are eigenvectors of the
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infinitesimal rotation generator R, in the plane x–y belonging to the eigenvalues
±2i. Thus, the components of hµν which contribute to the energy correspond to
spin− 2.

In the case of the prototype of spin − 1 gravitational waves (3), for f = 1/2, we
have

τ0
0 ∼ c1(h0x,x)2 + c2(h0y,x)2, t00 = t30

where c1 and c2 are constants, so that the physical components of the metric are h0x

and h0y. Following the usual analysis one can see that these two components are
eigenvectors of iR belonging to the eigenvalues ±1. In other words, metrics (3),
which are not pure gauge since the Riemann tensor is not vanishing, represent
spin− 1 gravitational waves propagating along the z-axis at light velocity.

This is related to the harmonic function of the transverse coordinates: in order
to have an asymptotically flat wave, singularities or some sort of non triviality in
the spacetime topology are necessary. The question is, can reasonable sources be
found to smooth out the singularities? The answer is positive as we will see in more
details in the next sections. Now we will show a simple and interesting example of
such solutions.

As a simple example let us consider perturbations, as in equation (3), of the form
h = dw(x, y) · df(z − t) which are not globally square integrable. The metric

g = η + dw(x, y) · df(u), u = z − t,
(
∂2
x + ∂2

y

)
w = 0 (6)

being spatially asymptotically flat for a wide choice of harmonic functions w. In-
deed, it represents a physically interesting gravitational field: gravitational waves
propagating along the z-axis at light velocity. Besides to be a solution of the lin-
earized Einstein equations on flat background, it is an exact solution of Einstein
equations too.

It is trivial to verify that metric (6) is written in harmonic coordinates and has
an off-diagonal form, that is, the perturbation h has only one index in the plane
x–y orthogonal to the propagation direction z. For this reason the above gravi-
tational wave has spin equal to one and is not a pure gauge [6]. With a suitable
transformation it is possible to bring the above gravitational wave in the standard
transverse-traceless form, however one can check that the new coordinates are not
harmonic anymore.

Summarizing: globally square integrable spin−1 gravitational waves propagating
on a flat background are always pure gauge. Spin − 1 gravitational waves which
are not globally square integrable are not pure gauge.
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2.2. Asymptotic Flatness and Matter Sources

In the vacuum case, the coordinates (x, y, z, t) of the metrics (6) are harmonic. Be-
ing z the propagation direction, the physical effects manifest themselves in the x–y
planes orthogonal to the propagation direction. In order these metrics be asymp-
totically Minkowski for x2 + y2 → ∞, the function w is required to satisfy the
condition

lim
x2+y2→∞

(w − c1x+ c2y − c3) = 0

where c1, c2 and c3 are arbitrary constants and the behaviour of w can be easily
recognized by looking at the Riemann tensor of the metrics (6)

Ruiuj = f,uw,ij (7)

which depends on the second derivatives of the harmonic function w.
Therefore, to have an asymptotically Minkowski metric, the function w must be
asymptotically close to a linear functions. But, due to standard results in the theory
of linear Partial Differential Equations, this is impossible unless w is a linear func-
tion everywhere and this would imply the flatness of the metrics (6). However, if
we admit δ-like singularities in the x–y planes, non trivial spatially asymptotically
Minkowski vacuum solutions with w 6= const can exist [7]. Of course, it is not
necessary to consider δ-like singularities: it is enough to take into account mat-
ter sources. For example, in the presence of an electromagnetic wave propagating
along the z axis, with energy density equal to ρ which vanishes outside a compact
region of the x–y planes, the exact non vacuum Einstein equations for metrics (6)
read (see, for example [7])

f,u
(
∂2
x + ∂2

y

)
w = κρ

where κ is the gravitational coupling constant. Thus, one can have non-singular
spin− 1 gravitational waves by considering suitable matter sources which smooth
out the singularities.
From the phenomenological point of view, it is worth to note that these kind of
wave-like gravitational fields, unlike standard spin − 2 gravitational waves which
can be singularities free even in the vacuum case, have to be coupled to matter
sources in order to represent reasonable gravitational fields. The observational
consequence of this fact is that spin − 1 gravitational waves are naturally weaker
than spin − 2 gravitational waves [18]. Typically, if the characteristic velocity of
the matter source is v, the spin − 1 wave is suppressed by factors (v/c)n with re-
spect to a spin − 2 wave. It is worth to note that a gravitational field may also
have a repulsive character. For instance, a Kerr black hole is “more repulsive” than
a Schwarzschild black hole with the same mass. This is obviously related to the
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angular momentum. Roughly speaking, this effect may be attributed to the “grav-
itomagnetic” part of the Kerr metric which, in our terminology, is the “spin − 1”
part. On the other hand, the Kaluza-Klein mechanism allows to construct in pure
five-dimensional gravity, solutions with spin− 1 excitations (which in four dimen-
sions may be interpreted as electromagnetic and, therefore, repulsive-degrees of
freedom. Of course, the Kaluza-Klein mechanism also works when reducing from
four to three dimensions. Solutions we are calling spin − 1 gravitational waves
when reduced to three dimensions (considering as extra dimension the propaga-
tion direction of the wave) give rise to purely electromagnetic fields.

3. A Gravitoelectromagnetic Perspective

A different point of view, which is useful in clarifying the nature of spin− 1 grav-
itational waves is provided by the gravitoelectromagnetism, henceforth GEM (see,
for example, [17]). In this scheme one tries to exploit as much as possible the
similarities between the Maxwell and the linearized Einstein equations. To make
this analogy evident it is enough to write a weak gravitational field fulfilling con-
ditions (4) in the GEM form (see, for example, [17, 22])

ds2 = c2
(

1 + 2
Φ(g)

c2

)
dt2 +

4
c

(
A(g) · dx

)
dt−

(
1− 2

Φ(g)

c2

)
δijdxidxj (8)

with

h00 =
4Φ(g)

c2
, h0i = −

4A(g)i

c2

(in this section the speed of light c will be explicitly written). Hereafter, the spatial
part of four-vectors will be denoted in bold and the standard symbols of three-
dimensional vector calculus will be adopted. In terms of Φ(g) and A, the harmonic
gauge condition reads

1
c

∂Φ(g)

∂t
+

1
2
∇ ·A(g) = 0 (9)

and, once the gravitoelectric and gravitomagnetic fields are defined in terms of
GEM potentials, as

E(g) = −∇Φ(g) −
1
2c
∂A(g)

∂t
, B(g) = ∇∧A(g) (10)

one finds that the linearized Einstein’s equations resemble the Maxwell equations.
Consequently, being the dynamics fully encoded in Maxwell-like equations, the
GEM formalism describes the physical effects of the vector part of the gravitational
field. The situations which are usually described in this formalism are, typically,
static. In fact, when this assumption is dropped, GEM gravitational waves are also
possible.
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The energy-momentum content of gravitational fields of form in (8) is well de-
scribed, in the asymptotically flat case, by the Landau-Lifshitz pseudo-tensor
tµν [17].
Spin− 1 gravitational waves, as one could expect on the basis of the Kaluza-Klein
theory, can be put in an “almost” GEM form. This can be understood recalling
that they have only one index in the plane transversal to the propagation direction.
A generic spin − 1 gravitational wave, propagating along the z axis on flat space-
times, has the form in equation (2) with u = z − t and v = z + t, and this is
almost the same form of equation (8) provided one replaces the time-like index
0 with the light-like index u representing the propagation direction of the wave.
The analogous of the gravitomagnetic potential reads in this case A(g)(x, y, u) =
(ϕ,x, ϕ,y, 0) and the harmonic gauge condition is

∇ ·A(g) =
(
∂2
x + ∂2

y

)
ϕ = 0. (11)

Thus, the analogue of the gravitoelectric and magnetic fields are

E(g) = − 1
2c

(ϕ,xu, ϕ,yu, 0), B(g) = (ϕ,yu,−ϕ,xu, 0) (12)

and the Einstein equations reduce to

∇ ·E(g) = −4πGρ (13)

so that, outside the matter sources, the harmonic gauge condition implies the vac-
uum field equations.

4. Back to Tolman-Ehrenfest-Podolsky-Wheeler Problem

A steady light beam lying along the z-axis is described by electromagnetic field
Fµν whose non vanishing components are

Ex = −F01 = E0 cos(kz − ωt) = By = F31.

The only non vanishing components of-the energy momentum tensor Tµν are

T00 = T33 = −T03 = −T30 = E02 cos 2(kz − ωt)/4π.

Taking the time average over a time grater than ω−1 and localizing the waves in a
beam, we get

T00 = T33 = −T03 = −T30 = E02δ(x)δ(y)/8π

where the Dirac delta-function δ has been introduced.
Thus, it is natural to consider a metric perturbation whose non vanishing compo-
nents are

h00 = h33 = −h03 = −h30, hµµ = 0, ∂thµν = ∂zhµν = 0.
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Then, the gravitoelectric and the gravitomagnetic components of the metric are
given by

E(g)µ = F(g)µ0, B(g)m
= −εµabF(g)αβ/2

where

F(g)µν = ∂µA(g)ν − ∂νA(g)µ, A(g)µ = −h0µ/4 = (Φ(g), A(g)).

It turns out that

• the first order geodesic motion for a massive particle in the light beam grav-
itational field is determined by the force

f(g) = −2E(g) − 4v ∧B(g)

where v is the velocity of the particle.
• the first order geodesic motion for a photon propagating, in the light beam

gravitational field, parallel(anti) to z-axis (uj = ±δj3) is lightly different

f(g) = −4
(
E(g) + v ∧B(g)

)
.

In previous section, we have seen that a gravitational wave generated by the light
is described by the exact Einstein metric

g = dx2 + dy2 + 2dudv + wu−2du2.

In that case, the perturbation is given by

h00 = h33 = −h03 = −h30 = wu−2

and we have

E(g) = −1
4

(
wx, wy,

w

u

)
u−2, B(g) =

1
4

(
wy,−wx,

w

u

)
u−2.

The gravitational force acting over a massless particle is given by

f(g) = −[wx(1− vz)i + wy(1− vz)j + (wxvx + wyvy)k]/4u2.

If the photon propagates parallel to the light beam, v = (0, 0, 1), then

f(g) = 0

and there is not attraction or repulsion. It is worth to address that this result holds at
first order approximation; the analysis in the strong gravity regime will be exposed
in a forthcoming paper [31].
Thus, if the photon propagates antiparallel to the light beam v = (0, 0,−1), then

f(g) = −∇w/2u2

and the force turns out to be attractive.
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However, it is known from Quantum Field Theory that one consequence of spin−
1 messengers is that particles with the same orientation repel and particles with
opposite orientation attract.
Thus, the apparent lacking of attraction must be ascribed to the linear approxima-
tion since, according to our results, photons generate spin− 1 gravitational waves
and, as a consequence, two photons with same helicity must repel one another [31].
Are these effects observable?
It can be seen that the transversal acceleration per unit length for two laser beams
in VIRGO interferometer (W = 1 watt, separation d = 10 cm) is only dv/dl =
2.10−110 cm−1 which is too small to be detected with the actual technology.
For a gravitational wave coming from Virgo cluster with dimensionless amplitude
h = 10−21 and frequency ν = 1 KHz, it turns out that

dv/dl = hν/c = 3.3.10−29 cm−1.

Thus, even if the effects cannot be certainly observed in the Laboratory, they may
be relevant at cosmic scale.
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