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In this paper we study an abelian version of the notion of return word. Our main result is a new
characterization of Sturmian words via abelian returns. Namely, we prove that a word is Sturmian if
and only if each of its factors has two or three abelian returns. In addition, we describe the structure of
abelian returns in Sturmian words, and discuss connectionsbetween abelian returns and periodicity.

1 Introduction

Sturmian words can be defined as infinite words having the lowest subword complexity among all aperi-
odic words. Sturmian words have been widely studied due to their fundamental importance in different
fields of theoretical computer science. For a survey on some results on Sturmian words we refer to [4].
Sturmian words have many equivalent characterizations, e.g. using balanced words, cutting sequences,
mechanical words, and via morphisms. In this paper, we develop the approach based on the concept of
return words.

The notion of a return word is a powerful tool for studying various problems of combinatorics on
words, symbolic dynamical systems and number theory. Considering each occurrence of a factorv in an
infinite word, the set of return words ofv is defined to be the set of all distinct words beginning with an
occurrence ofv and ending just before the next occurrence ofv. This notion was introduced by F. Durand
and was used for a characterization of primitive substitutive sequences [1]. In [6] it was proved that a
word is Sturmian if and only if each of its factors has two returns; in [3] the proofs were simplified and
the return words were studied in episturmian words.

In this paper, we establish a similar result for an abelian analogue of the notion of return word. Two
words are abelian equivalent, if they are permutations of each other. Different abelian properties of words
are widely studied nowadays, such as abelian powers, avoidance, complexity, abelian periods, etc. We
consider return words up to abelian equivalence: defining abelian returns of a factorv of an infinite word,
we consider all occurrences of factors abelian equivalent to v, and the set of abelian returns is also defined
up to abelian equivalence. As the main result we prove that a word is Sturmian if and only if each of its
factors has two or three abelian returns. Notice that the methods we used are different from ones used in
[3, 6].

The paper is organized as follows. After a few preliminary definitions in Section 2, we discuss in
Section 3 connections between abelian returns and periodicity. In Section 4, we state our main result
concerning characterization of Sturmian words. In Section5 we study the structure of abelian returns of
Sturmian words. We prove that every factor of a Sturmian wordhas two or three abelian returns; more-
over, a factor has two abelian returns if and only if it is singular. In Section 6 we prove the sufficiency of
the condition on the number of abelian returns for a word to beSturmian.
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2 Preliminaries

We begin by presenting some basics on return words together with key definitions we use in the paper.
Given a finite non-empty setΣ (called the alphabet), we denote byΣ∗ andΣω , respectively, the set of

finite words and the set of (right) infinite words over the alphabetΣ. A word v is a factor (resp. aprefix,
resp. asuffix) of a wordw, if there exist wordsx, y such thatw= xvy (resp.w= vy, resp.w= xv). The
set of factors of a finite or infinite wordw is denoted byF(w). Given a finite wordu= u1u2 . . .un with
n≥ 1 andui ∈ Σ, we denote the lengthn of u by |u|. The empty word will be denoted byε and we set
|ε |= 0. We say that a wordw is periodic, if there existsT such thatwn+T = wn for everyn. A word w is
aperiodic, if it is not periodic.

Sturmian words can be defined in many different ways. For example, they are infinite words having
the smallest subword complexity among aperiodic words. Thesubword complexity of a word is the
function f (n) defined as the number of its factors of lengthn. For Sturmian wordsf (n) = n+1.

Let w = w1w2 . . . be an infinite word. The wordw is recurrent if each of its factors occurs in-
finitely many times inw. In this case, foru ∈ F(w), let n1 < n2 < .. . be all integersni such that
u = wni . . .wni+|u|−1. Then the wordwni . . .wni+1−1 is a return word (or briefly return) of u in w. An
infinite wordhas k returns, if each of its factors hask returns. The following characterization of Stur-
mian words via return words was established in [6]:

Theorem 1. [6] A recurrent infinite word has two returns if and only if it is Sturmian.

Also there exists a simple characterization of periodicityvia return words:

Proposition 1. [6] A recurrent infinite word is ultimately periodic if and only if there exists a factor
having exactly one return word.

We now define the basic notions for the abelian case. Given a finite wordu= u1u2 . . .un with n≥ 1
andui ∈ Σ, for eacha∈ Σ, we let |u|a denote the number of occurrences of the lettera in u. Two words
u andv in Σ∗ areabelian equivalentif and only if |u|a = |v|a for all a∈ Σ. We denote it byu≈ab v. It is
easy to see that abelian equivalence is indeed an equivalence relation onΣ∗.

For an infinite recurrent wordw and for u ∈ F(w), let n1 < n2 < .. . be all integersni such that
wni . . .wni+|u|−1 ≈

ab u. Then the wordwni . . .wni+1−1 is anabelian return word(or brieflyabelian return)
of u in w. We say thatu has k abelian returns, if the set of its abelian returns consists ofk abelian classes.
So, we actually consider abelian classes of returns to abelian classes.

Example. Consider abelian returns of the factor 01 of the Thue-Morse word

t = 0110100110010110. . .

that is a fixed point of the morphismµ : µ(0) = 01, µ(1) = 10. The abelian class of 01 consists of
two words 01 and 10. Consider an occurrence of 01 starting at position i, i.e., ti = 0, ti+1 = 1. It can
be followed by either 0 or 10, i.e. we have eitherti+2 = 0 or ti+2 = 1, ti+3 = 0. In the first case we
haveti+1ti+2 = 10, which is abelian equivalent to 01, and hence we have an abelian returnti = 0. In
the second caseti+1ti+2 = 11, which is not abelian equivalent to 01, so we consider the next factor
ti+2ti+3 = 10≈ab 01, which gives the abelian returntiti+1 = 01. Symmetrically, 10 gives abelian returns
1 and 10. So, in total the abelian class of 01 has three abelianreturns: 0, 1 and 01≈ab 10.

In this paper we establish a new characterization of Sturmian words analogous to Theorem 1. Namely,
we prove that a recurrent infinite word is Sturmian if and onlyif each of its factors has two or three abelian
returns. On the other hand, contrary to property of being Sturmian, abelian returns do not give a simple
characterization of periodicity analogous to Proposition1.
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3 Abelian returns and periodicity

First we prove a simple sufficient condition for periodicity:

Lemma 1. Let |Σ| = k. If each factor of a recurrent infinite word over the alphabetΣ has at most k
abelian returns, then the word is periodic.

Proof. Let w be a recurrent word over ak-letter alphabet, and letv be a factor ofw containing all letters
from the alphabet. Consider two occurrences ofv in w, say in positionsm andn (with m< n). Then the
abelian class ofwm. . .wn−1 has all letters as abelian returns, and hence no more, because every factor of
w must have at mostk abelian returns. Thusw is periodic with periodn−m.

Remark. Actually, this proves something stronger: Letw be any aperiodic word over an alphabetΣ,
|Σ| = k, and letu be any factor ofw containingk distinct letters, and letvu be any factor ofw distinct
from u beginning inu. Then the abelian class ofv must have at leastk abelian returns. It follows that if a
word is not periodic, then for every positive integerN there exists an abelian factor of length> N having
at leastk+1 abelian returns. In other words, the valuek+1 must be assumed infinitely often.

Remark. Notice that the condition given by Lemma 1 is not necessary for periodicity. It is not difficult
to construct a periodic word such that some of its factors have more thank abelian returns.

Notice also that a characterization of periodicity similarto Proposition 1 in terms of abelian returns
does not exist. Moreover, in the case of abelian returns it does not hold in both directions. Consider an
infinite aperiodic word of the form{110010,110100}ω . It is easy to see that the factor 11 has one abelian
return 110010≈ab 110100. So, the existence of a factor having one abelian return does not guarantee
periodicity. The converse is not true as well: there exists aperiodic word such that each of its factors has
at least two abelian returns. The example is given by the following word with period 24:

w= (001101001011001100110011)ω .

To check that every factor of this word has at least two abelian returns, one can check the factors up to
the length 12. If we denote the period ofw by u, then every factorv of length 12< l ≤ 24 has the same
abelian returns as abelian class of words of length 24− l obtained fromu by deletingv. For a factor of
length longer than 24 its abelian returns coincide with abelian returns of part of this factor obtained by
shortening it byu.

4 Characterization of Sturmian words

The main result of this paper is the following characterization of Sturmian words:

Theorem 2. An aperiodic recurrent infinite word is Sturmian if and only if each of its factors has two or
three abelian returns.

We prove this theorem in the following two sections. The necessity of the condition on the number of
abelian returns is proved in Section 5, Proposition 3; the sufficiency is proved in Section 6, Proposition
5. Due to space limitations, we give only a sketch of the proofomitting some of the details. We also
establish some properties of abelian returns of Sturmian words, e. g., we show that a factor of a Sturmian
word has two abelian returns if and only if it is singular (Section 5, Theorem 4).
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5 The structure of abelian returns of Sturmian words

In this section we prove the “only if” part of Theorem 2, and inaddition we establish some properties
concerning the structure of abelian returns of Sturmian words.

To describe the abelian returns for Sturmian words, we need to recall some notation. A factoru of
an infinite wordw is calledright special(left special), if ua, ub (au, bu) are factors ofw for two distinct
lettersa, b. For a Sturmian word there exists exactly one right special factor of a fixed length. Note
also that the set of factors of a Sturmian word is closed underreversal. A factor isbispecial, if it is
right and left special. A factor of a Sturmian word is calledsingular if it is the only factor in its abelian
class. Notice that singular factors have the formaBa, wherea is a letter andB is a bispecial factor. The
following proposition follows directly from definitions and basic properties of Sturmian words:

Proposition 2. Abelian returns of factors of a Sturmian word are either letters or of the form aBb, where
a 6= b are letters, and B is a bispecial factor.

Proof. Consider abelian return to a factorv of length n starting at positioni. If wi = wi+n, then the
letter wi is abelian return. Ifwi = a, wi+n = b, a 6= b, then there existsk ≥ 0, such thatwi+1 . . .wi+k =
wi+1+n . . .wi+k+n, andwi+k+1 6= wi+k+1+n. Sincew is balanced, we have thatwi+k+1 = b, wi+k+1+n = a.
So,wi+k+2 . . .wi+k+n+1 ≈

ab v, andwi . . .wi+k+1 ≈
ab wi+n . . .wi+k+n+1 is abelian return tov. By definition

the factorwi+1 . . .wi+k = wi+1+n . . .wi+k+n is bispecial.

Corollary 1. In the case of Sturmian words, for each length l≥ 2 there exists at most one abelian return
of length l.

Now we proceed to the ”only if” part of Theorem 2:

Proposition 3. Each factor of a Sturmian word has two or three abelian returns.

The proof of this proposition is based on the characterization of balanced words presented in [2]. We
will need some notation from the paper.

Suppose 1≤ p < q are positive integers such that gcd(p,q) = 1. Let Wp,q denote the set of all
words w ∈ {0,1}q with |w|1 = p. If w ∈ Wp,q then the symbol 1 occurs with frequencyp/q in w.
Define theshift σ : {0,1}ω → {0,1}ω by σ(w)i = wi+1. Similarly defineσ : {0,1}q → {0,1}q by
σ(w0 . . .wq−1) = w1 . . .wq−1w0.

Since gcd(p,q) = 1 then any element ofWp,q has the least periodq under the shift mapσ . We will
write w∼w′ if there exists 0≤ k≤ q−1 such thatw′ =σ k(w). In this case we say thatw, w′ arecyclically
conjugate, or thatw, w′ are cyclic shifts of one another. The equivalence class{σ i(w) : 0≤ i < q} of
eachw∈ Wp,q contains exactlyq elements. Let

Wp,q = Wp,q/∼

denote the corresponding quotient. Elements ofWp,q are called orbits. It will usually be convenient to
denote an equivalence class inWp,q by one of its elementsw.

Given an orbit[w] ∈Wp,q, let

w(0) <L w(1) <L · · ·<L w(q−1)

denote the lexicographic ordering of its elements. Define the lexicographic arrayA[w] of the orbit [w]
to be theq× q matrix whoseith row is w(i). We will index this array by 0≤ i, j ≤ q− 1, so that

A[w] = (A[w]i j )
q−1
i, j=0. For 0≤ i, j ≤ q−1, letw(i)[ j] denote the length-( j +1) prefix ofw(i); so thew(i)[ j]
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are the length-( j + 1) factors ofw, counted with multiplicity. For eachj this induces the following
lexicographic ordering:

w(0)[ j]≤L w(1)[ j]≤L · · · ≤L w(q−1)[ j].

Theorem 3. [2] Suppose w∈ {0,1}q. The following are equivalent:
(1) w is a balanced word,
(2) |w(i)[ j]|1 ≤ |w(i +1)[ j]|1 for all 0≤ i ≤ q−2 and0≤ j ≤ q−1.

The following proposition from [2] gives a very practical way of writing down the lexicographic
array associated to a balanced word.

Proposition 4. [2] Let [w] be the unique balanced orbit inWp,q. Define u∈ Wp,q by

u= 0. . .01. . .1
︸ ︷︷ ︸

p

Then, for0≤ i, j ≤ q−1,
(1) A[w]i j = (σ jpu)i ,
(2) The jth column of A[w] is (the vector transpose of) the wordσ jpu
(3) w(i) = ui(σ pu)i(σ2pu)i . . . (σ (q−1)pu)i .

Example. Consider a balanced wordw= 0101001∈ Wp,q. The lexicographic ordering of[w] is

0010101<L 0100101<L 0101001<L 0101010<L 1001010<L 1010010<L 1010100,

so the corresponding lexicographic array is

A[w] =













0 0 1 0 1 0 1
0 1 0 0 1 0 1
0 1 0 1 0 0 1
0 1 0 1 0 1 0
1 0 0 1 0 1 0
1 0 1 0 0 1 0
1 0 1 0 1 0 0













We now apply the above technique for studying abelian returns as follows:
Fix a Sturmian words and a factorv. We consider a standard factorw (see, e. g., [4]) ofs of long

enough length to containv and all abelian returns tov. Let |w|= q, |w|1 = p. Then all the conjugates of
w are factors ofs, they are pairwise distinct, and gcd(p,q) = 1 (see, e. g. [5]). To be definite, we assume
thatv is ”poor” in 1-s, i.e., it contains fewer 1’s than the unique other abelian class of the same length.
Then if we consider inA[w] the wordsw(i)[ j], we have that there existsn< q−1 such thatw(i)[ j]≈

ab v
for 0≤ i ≤ n, andw(i)[ j] 6≈

ab v for n< i ≤ q−1. Note also thatA[w]im = A[w](i+q−p)(m+1); from now on
the indices are taken moduloq.

The lexicographic array allows to find abelian returns tov in the following way. For a wordu denote
by u[m, l ] the factorum. . .ul . If for an i, 0≤ i ≤ n, we havew(i)[k,k+ j] ≈ab v andk is the minimal
such length, thenw(i)[k−1] is abelian return tov. Notice also that ifA[w](i−1)k = 1 andA[w]ik = 0, then
w(m)[k,k+ j] ≈ab v for m= i, . . . , i + n. I. e., we have exactlyn+ 1 words from the abelian class ofv
starting in every column, and these words are in consecutiven+ 1 rows (the first and the last row are
considered as consecutive).
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Example. Consider abelian returns to the abelian class of 001 in the example above.w(i)[2]≈
ab 001 for

0≤ i ≤ 4; w(i)[1,3] ≈
ab 001 for i = 4,5,6,0,1, w(i)[2,4] ≈

ab 001 for i = 1, . . . ,5. So, the abelian returns
arew(0)[0] = w(1)[0] = 0, w(4)[0] = 1, w(2)[1] = w(3)[1] = 01.

Proof of Proposition 3.Suppose that some factorv of length j +1 has 4 abelian returns, to be definite
let this factor be poor in 1, and in the lexicographic array, rows 0. . .n start with factors from the abelian
class ofv. By Corollary 1 there can be at most one abelian return of a fixed length greater than 1 (length
1 will be considered separately), so in a lexicographic array we have one of the following situations:

1) there existk1 < k2 andn1 < n2 < n such thatwi[ j] has abelian returns of lengthk1 for i = 1, . . . ,n1,
wi[ j] has abelian returns of lengthk2 for i = n1 + 1, . . . ,n2, andwn2+1[ j] has abelian returns of length
greater thank2;

2) symmetric case: there existk1 < k2 andn1 < n2 < n such thatwi[ j] has abelian returns of lengthk2

for i = n1+1, . . . ,n2, wi [ j] has abelian returns of lengthk1 for i = n2+1, . . . ,n, andwn1[ j] has abelian
returns of length greater thank2.

We consider case 1) (for case 2) the proof is similar). First,in case 1) one can notice that the words
wn1[k1,k1+q] andwn2[k2,k2+q] coincide. So if we consider abelian returns ”to the left” of the words
wn1[k1,k1+ j] andwn2[k2,k2+ j], they should be the same, but they are not: the first one is of lengthk1,
the second one is of lengthk2.

It remains to consider the case whenv has both letters as abelian returns. It can be seen directly from
the lexicographic array, that the third and the last return is 01 (in this case after a word not from abelian
class ofv we will necessarily have a word from abelian class ofv, i.e., the longest possible length of
abelian return is 2).

Theorem 4. A factor of a Sturmian word has two abelian returns if and onlyif it is singular.

Proof. The method of the proof is similar to the proof of Proposition3 and relies upon the characterization
of balanced words from [2].

If a factor is singular, then it is the only word in its abelianclass, so its abelian returns coincide with
usual returns. Since every factor of a Sturmian word has two returns [6], then a singular factor has two
abelian returns.

Now we will prove the converse, i.e., that if a factorv, |v| = j + 1 of a Sturmian words has two
abelian returns, then it is singular.

As in the proof of Proposition 3, we consider a standard factor w of sof long enough length to contain
v and all abelian returns tov, and denote|w|= q, |w|1 = p. Without loss of generality we again assume
thatv is ”poor” in 1-s, so that there existsn< q−1 such thatw(i)[ j]≈

ab v for 0≤ i ≤ n, andw(i)[ j] 6≈
ab v

for n< i ≤ q−1.

It is not difficult to see that two abelian returns are possible in one of the following cases:

Case 1) there exist 0≤ m< n, 0< k1,k2 < q such thatw(i)[k1 − 1] is abelian return for all 0≤ i ≤ m,
w(i)[k2−1] is abelian return for allm+1≤ i ≤ n;

Case 2) there exist 0≤ m1 < m2 < n, 0 < k1 < k2 < q such thatw(i)[k1 − 1] is abelian return for all
0≤ i ≤ m1 andm2+1≤ i ≤ n; w(i)[k2−1] is abelian return for allm1+1≤ i ≤ m2.

Case 1)In case 1) we will assume thatk1 < k2, the proof in casek2 < k1 is symmetric. We will consider
two subcases:

Case 1a)A[w]mk2 = 1, A[w](m+1)k2
= 0. This means thatw(i)[k2,k2+ j]≈ab v for i = m+1, . . . ,m+n+1,

andA[w]m(k2−1) = 0, A[w](m+1)(k2−1) = 1. So, the elementA[w](m+1)k2
is a left-upper element of a block
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of abelian class ofv, andA[w]m(k2−1) is a right-lower element of another such block. It is easy to see that
the latter block starts in columnk1. Therefore,|v|= j +1= k2−k1 < k2.

In case 1a) we will prove that the abelian class ofv consists of a single word, i.e.,w(i)[ j] = v for
i = 0, . . . ,n. Suppose thatw(i)[ j] 6= w(i+1)[ j] for somei ∈ {0, . . . ,n− 1}. Since the rows grow lexico-
gaphically, it means that there exists 0≤ l < j < k2 − 1 such thatA[w]il = 0, A[w](i+1)l = 1. Hence
A[w]i(l+1) = 1, A[w](i+1)(l+1) = 0, and sow(i+1)[l +1, l +1+ j] ≈ab v. If m< i +1 ≤ n, then the word
w(i+1)[ j] has returnw(i+1)[l ], which is impossible, because it has returnw(i)[k2]. Similarly we get that the
case 0≤ i +1≤ mandl +1< k1 is impossible.

In case 0≤ i+1≤mandk1 ≤ l +1< k2 we get that the wordw(i+1)[k1,k1+ j] has returnw(i+1)[k1, l ]
of lengthl−k1+1. But in this casew(t)[l+1, l+1+ j]≈ab v for t = i+1, . . . , i+1+n. Contradiction with
the condition thatw(t)[k2−1] is abelian return tow(t)[ j]. So, the case 0≤ i +1≤ m andk1 ≤ l +1< k2

is impossible. Hencew(i)[ j] = w(i+1)[ j] for i = 0, . . . ,n−1, i.e., the abelian class ofv consists of a single
word.

Case 1b)A[w]mk2 = 0 orA[w](m+1)k2
= 1. This means thatw(m)[k2,k2+ j]≈ab v. Hence the wordw(n)[ j]

has abelian returnw(n)[k2] of lengthk2+1, and the wordw(m)[k1,k1+ j] has abelian returnw(m)[k1,k2]
of lengthk2−k1+1, so the returns are different. This is impossible sincew(n) = w(m)[k1,k1+q−1].

Case 2)In case 2) the fact thatw(i)[k1] is abelian return for all 0≤ i ≤ m1−1 andm2+1≤ i ≤ n implies
that n > q/2. So,k1 = 1, i.e., we necessarily have return(s) of length 1. Since there are two abelian
returns totally, we can have only one return of length 1, and this return is 0. It means thatA[w]i0 = 0 for
0≤ i ≤ n. Sincew(m2)[1, j +1] 6≈ab v andw(m2+1)[1, j +1]≈ab v, we haveA[w]m21 = 1, A[w](m2+1)1 = 0,
and henceA[w]m20 = 0, A[w](m2+1)0 = 1. We get a contradiction withA[w]i0 = 0 for 0≤ i ≤ n.

So, the converse is proved, i.e., every factor of a Sturmian word having two abelian returns is singular.

6 Proof of Theorem 2: the sufficiency

Here we prove the ”if” part of Theorem 2, i.e., we establish the condition on the number of abelian
returns forcing a word to be Sturmian:

Proposition 5. If each factor of an aperiodic recurrent infinite word has twoor three abelian returns,
then the word is Sturmian.

The proof of this proposition is rather technical, it is based on considering abelian returns to different
possible factors of the infinite word and consecutive restricting the form of the word. Denote the non-
periodic word with 2 or 3 abelian returns byw. First we notice that Lemma 1 implies that an aperiodic
word with 2 or 3 abelian returns must be binary, we denote letters by 0 and 1:w∈ {0,1}ω . In the rest
of this section instead of abelian returns ”to the left” we consider abelian returns ”to the right”: ifvu is a
factor havingv′ ≈ab v as its suffix, andvu does not contain as factors other words abelian equivalent to
v besides suffix and prefix, thenu is abelian return tov. It is easy to see that no matter of the definition,
the set of abelian returns to each abelian factor is the same.Though this does not make any essential
difference, this modification of the definition is more convenient for our proof of this proposition.

We say that a lettera is isolatedin a wordw∈ Σω , if aa is not a factor ofw. We will make use of the
following key lemma:

Lemma 2. If each factor of an aperiodic recurrent infinite word w has atmost three abelian returns,
then one of the letters is isolated.
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Sketch of proof.In the proof of this lemma we will use the following definition. We say that a letter
a ∈ Σ appears in w in a series of length k> 0, if a word bakc is factor ofw for some lettersb 6= a,
c 6= a. Considering abelian returns to letters, we get that every letter can appear in series of at most three
different lengths. Denote these lengths for series of 0’s byl1, l2, l3, wherel1 < l2 < l3, for series of 1’s
by j1, j2, j3, where j1 < j2 < j3. Notice that a letter can appear in series of only two or one lengths, then
the third length or the third and the second lengths are missing.

Consider abelian returns of the word 10l1: they are 1, 0l−l11 for l = l2, l3 (if 0 appears in series of
corresponding lengths), 1j−10l1 for j = j1 > 1, j2, j3 (if 1 appears in series of corresponding lengths) and
0 for j1 = 1 . Some of these returns should be missing or abelian equivalent to others in order to have at
most three abelian returns totally. So we have the followingcases:

– j2, j3, l3 are missing, i.e.,w∈ {0l11 j1,0l21 j1}ω . In this case abelian returns are 1, 0l2−l11, and 1j1−10l1

for j1 > 1 or 0 for j1 = 1.
– l2, l3, j3 are missing, i.e.,w∈ {0l11 j1,0l11 j2}ω . Abelian returns are 1, 1j2−10l1, and 1j1−10l1, if j1 > 1,
or 0, if j1 = 1.
– j2, j3 are missing,j1 = 2, l2 = 2l1 or l3 = 2l1, i.e.,w∈ ({0l1,02l1,0l}1 j2)ω . Abelian returns are 1, 0l11,
0l−l11.
– l3, j3 are missing,l2 = 2l1, j1 = 2 or j2 = 2, w ∈ ({0l1,02l1}{12,1 j})ω . Abelian returns are 1, 0l11,
1 j−10l1 (if j > 1) or 0 (if j = 1).

Notice that the first two cases are symmetric. Considering abelian returns to the word 1j10, we get
symmetric cases (0 change places with 1,jk change places withlk, k = 1,2,3). Combining the cases
obtained by considering abelian returns to 10l1 with the cases obtained by considering abelian returns to
1 j10, we finally get the following remaining cases (up to renaming letters):

1) j2, j3, l3 are missing, i.e.w is of the formw∈ {0l11 j1,0l21 j1}ω .

2) l3, j3 are missing,l1 = 1, l2 = 2, j1 = 2, j2 = 4, i.e.w∈ ({0,02}{12,14})ω .

3) l3, j3 are missing,l1 = 1, l2 = 2, j1 = 1, j2 = 2, i.e.w∈ ({0,02}{1,12})ω .

4) l3, j3 are missing,l1 = 2, l2 = 4, j1 = 2, j2 = 4. i.e.w∈ ({02,04}{12,14})ω .

Case 1): w∈ {0l11 j
1,0

l21 j
1}

ω .
In the first case we should prove thatj1 = 1. We omit index 1 for brevity:j = j1. Suppose thatj > 1.

Consider abelian returns to the word 10l2. They are 1, 1j−1(0l11 j)k0l2 for all k ≥ 0 such that the word
0l21 j(0l11 j)k0l2 is a factor ofw. Therefore, we have at most two values ofk (probably, including 0).

Abelian returns to the word 1j0l11 are 1,(0l21 j)m0l11 for allm≥ 0 such that the word 10l11 j(0l21 j)m0l11
is a factor ofw. So, we have at most two values ofm (probably, including 0).

Taking into account conditions form andk, which we have just obtained from considering abelian
returns to both 10l2 and 1j0l11, we find that there are two opportunities for an aperiodic word w:

Case 1a)w ∈ ({(0l11 j)k1,(0l11 j)k2}0l21 j)ω , 0 < k1 < k2. The word 0l21 j0l11 j−1 has returns 1, 0l11,
0l2(1 j0l1)k−11 for all k such that the word 0l21 j(0l11 j)k0l2 is a factor ofw. To provide at most three
abelian returns,w should admit only one value ofk. Hence,w is periodic and case 1a) is impossible.

Case 1b)w ∈ (0l11 j ,{(0l21 j)m1,(0l21 j)m2})ω , 0< m1 < m2. The word 1j0l11 j0l21 has returns 1, 10l2,
10l1(1 j0l2)m−1 for all m such that the word 10l11 j(0l21 j)m0l11 is a factor ofw. To provide at most three
abelian returns,w should admit only one value ofm. Hence,w is periodic and case 1b) is impossible.

Thus, in case 1) 1’s are isolated.

Cases 2)–4)In cases 2)–4) we need to consider words containing all four series, otherwise we get into
conditions of case 1) in which we proved that 1-s are isolated. The proof is similar for the three cases,
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and is based on studying abelian returns of certain type. When we examinew∈ ({0l1,0l2},{1 j1 ,1 j2})ω ,
we consider abelian returns to the words 0l11 j2 and 0l21 j1, and with a technical case study obtain that
if both words have at most three abelian returns, thenw is periodic. For brevity, we omit the details of
proof for cases 2)–4).

Lemma 3. If w ∈ {0l11,0l21}ω , 0< l1 < l2, is an aperiodic recurrent word and each of its factors has at
most three abelian returns, then l2 = l1+1.

Proof. Suppose thatl2 > l1 + 1. Consider abelian returns to the word 0l1+1: it has abelian returns 0
and 1(0l11)k10l1+1 for all k≥ 0 such that 0l21(0l11)k0l2 is a factor ofw, thus there could be at most two
different values ofk (probably, including 0). Consider abelian returns to the word 10l110: it has abelian
returns 0 and(0l2−110) j0l1−11 for all j ≥ 0 such that 10l11(0l21) j0l11 is a factor ofw, thus there could be
at most two different values ofk (probably, including 0). Sincew is non-periodic, we have two cases:

Case I:w ∈ (0l21{(0l11)k1,(0l11)k2})ω , 0 < k1 < k2. In this case one can find four abelian returns to
0l210l1−1: 0, 10l1−1, (10l1)k1−110l2−1, (10l1)k2−110l2−1.

Case II:w ∈ (0l11{(0l21) j1,(0l21) j2})ω , 0< j1 < j2. In this case one can find four abelian returns to
10l210l110: 0, 0l2−11, (0l2−110) j1−10l1−11, (0l2−110) j2−10l1−11.

The proof of Lemma 2 and Lemma 3 imply

Corollary 2. If each factor of an infinite aperiodic recurrent word w has two or three abelian returns,
then w∈ {0l11,0l1+11}ω .

Lemma 4. If each of factors of an aperiodic recurrent infinite word w has at most three abelian returns,
then w is2-balanced.

Proof. For a lengthn, consider abelian classes of factors of lengthn of such wordw. Denote byA the
abelian class of factors containing the smallest number of 1-s: A= {u∈ Fn(w) : |u|1 = minv∈Fn(w) |v|1}.
The next class we denote byB: B= {u∈ Fn(w) : |u|1 = minv∈Fn(w) |v|1+1}, the next one byC. If w has
only two abelian classes, then it is Sturmian, so we are interested in the case whenw has at least three
abelian classes. For a lengthn, we associate to a wordw a wordξ (n) over the alphabet of abelian classes
of w of lengthn as follows: for an abelian classM of words of lengthn, ξ (n)

k = M iff wk . . .wk+n−1 ∈ M.

In other words,(ξ (n)
k )k≥0 is the sequence of abelian classes of consecutive factors oflengthn in w.

It is easy to see thatξ (n) contains the following sequence of classes:CBj1A j2B for some j1, j2 ≥ 1,

i.e. for somei we haveξ (n)
i . . .ξ (n)

i+ j1+ j2+1 =CBj1A j2B. Then we have

wi = 1,wi+n = 0,

wk = wk+n for k= i +1, . . . , i + j1−1,

wi+ j1 = 1,wi+ j1+n = 0,

wk = wk+n for k= i + j1+1, . . . , i + j1+ j2,

wi+ j1+ j2 = 0,wi+ j1+ j2+n = 1.

I. e.,wi . . .wi+ j1+ j2 = 1u1v0, wi+n . . .wi+ j1+ j2+n = 0u0v1.
By Corollary 2 we havew∈ {0l11,0l1+11}ω , so|u| ≥ 2l1+1; u contains both letters 0 and 1 and has

a suffix 0l1. It follows that j2 = 1. So, the classB has the following 3 abelian returns: 0,1,01. All the
returns are of length at most 2, so if after an occurrence ofB we haveC, then the next class isB again,
otherwise we will get a longer return. So there are no other classes than these. In addition, we proved
that if for lengthn there are three abelian classes, then inξ (n) lettersA andC are isolated.
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Proof of Proposition 5.Due to Corollary 2 and Lemma 4, we have thatw is 2-balanced and it is of the
form {0l11,0l1+11}ω for some integerl1. Suppose thatw is not 1-balanced. Then there existsn for which
there exist three classes of abelian equivalence inFn(w); as above, denote these classes byA, B andC.
Arguing as in the proof of Lemma 4, consider a sequence of classesBCBjABwhich we necessarily have
in ξ (n) for some integerj, denote its starting position byi −1. Corresponding factor inw is

wi−1 = 0,wi−1+n = 1,

wi = 1,wi+n = 0,

wk = wk+n for k= i +1, . . . i + j −1,

wi+ j = 1,wi+ j+n = 0,

wi+ j+1 = 0,wi+ j+1+n = 1.

I. e.,wi . . .wi+ j+1 = 1u10,wi+n . . .wi+ j+1+n = 0u01. Remark thatu= wi+1 . . .wi+ j has prefix 0l110.
Now consider abelian returns to an abelian classB0= A1 of lengthn+1. The factor starting from

the positioni + 1 is of the formB0 so it belongs to this class, and has an abelian return 0. The word
starting from the positioni + j is of the formB0 and has an abelian return 1. The word starting from the
positioni + l1−1 belongs to this class, and has an abelian return 01. So we have at least three returns 0,
1 and 10. Now consider the occurrence of classB0= A1 to the left from the positioni +1. One can see
that the positionsi andi −1 are from the classB1=C0, so the preceding occurrence ofB0= A1 has an
abelian return of length greater than 2, which is a fourth return, though there should be at most three. So
we cannot have more than two classes of abelian equivalence in an aperiodic word having two or three
abelian returns, i.e., such word should be 1-balanced and hence Sturmian. Proposition 5 is proved.

Remark. Actually, in Proposition 5 instead of recurrence property one can consider a weaker property
of abelian recurrence in the sense that for every factoru of w there exists a factoru′ from the abelian
class ofu which occur infinitely many times inw.

Acknowledgements.The first author is partially supported by a grant from MagnusEhrnrooth Foun-
dation and by Russian Foundation of Basic Research (grants 10-01-00424, 09-01-00244). The second
author is partially supported by a grant from the Academy of Finland and by grant no. 090038011 from
the Icelandic Research Fund.

References

[1] Fabien Durand (1998):A characterization of substitutive sequences using returnwords. Discrete Math.179(1-
3), pp. 89–101, doi:10.1016/S0012-365X(97)00029-0.

[2] Oliver Jenkinson & Luca Q. Zamboni (2004):Characterisations of balanced words via orderings. Theoret.
Comput. Sci.310(1-3), pp. 247–271, doi:10.1016/S0304-3975(03)00397-9.

[3] Jacques Justin & Laurent Vuillon (2000):Return words in Sturmian and episturmian words. Theor. Inform.
Appl. 34(5), pp. 343–356, doi:10.1051/ita:2000121.

[4] M. Lothaire (2002):Algebraic combinatorics on words. Encyclopedia of Mathematics and its Applications90,
Cambridge University Press, Cambridge.

[5] S. Mantaci, A. Restivo & M. Sciortino (2003):Burrows-Wheeler transform and Sturmian words. Inform.
Process. Lett.86(5), pp. 241–246, doi:10.1016/S0020-0190(02)00512-4.

[6] Laurent Vuillon (2001):A characterization of Sturmian words by return words. European J. Combin.22(2),
pp. 263–275, doi:10.1006/eujc.2000.0444.

http://dx.doi.org/10.1016/S0012-365X(97)00029-0
http://dx.doi.org/10.1016/S0304-3975(03)00397-9
http://dx.doi.org/10.1051/ita:2000121
http://dx.doi.org/10.1016/S0020-0190(02)00512-4
http://dx.doi.org/10.1006/eujc.2000.0444

	1 Introduction
	2 Preliminaries
	3 Abelian returns and periodicity
	4 Characterization of Sturmian words
	5 The structure of abelian returns of Sturmian words
	6 Proof of Theorem ??: the sufficiency

