Abelian returns in Sturmian words

Svetlana Puzynina Luca Q. Zamboni
University of Turku, Finland Université de Lyon, France
Sobolev Institute of Mathematics, Novosibirsk, Russia University of Turku, Finland
svetlana.puzyinaQutu.fi zamboni@math.univ-lyonl.fr

In this paper we study an abelian version of the notion ofrretword. Our main result is a new
characterization of Sturmian words via abelian returnanblg, we prove that a word is Sturmian if
and only if each of its factors has two or three abelian retuimaddition, we describe the structure of
abelian returns in Sturmian words, and discuss connedbietvgeen abelian returns and periodicity.

1 Introduction

Sturmian words can be defined as infinite words having thedosigoword complexity among all aperi-
odic words. Sturmian words have been widely studied duediv fthndamental importance in different
fields of theoretical computer science. For a survey on s@sd@ts on Sturmian words we refer o [4].
Sturmian words have many equivalent characterizationg, asing balanced words, cutting sequences,
mechanical words, and via morphisms. In this paper, we dpvitle approach based on the concept of
return words.

The notion of a return word is a powerful tool for studying igais problems of combinatorics on
words, symbolic dynamical systems and number theory. @erisig each occurrence of a factoin an
infinite word, the set of return words gfis defined to be the set of all distinct words beginning with an
occurrence o and ending just before the next occurrence.dfhis notion was introduced by F. Durand
and was used for a characterization of primitive substiéuequences|[1]. In[6] it was proved that a
word is Sturmian if and only if each of its factors has two ref in [3] the proofs were simplified and
the return words were studied in episturmian words.

In this paper, we establish a similar result for an abelisalague of the notion of return word. Two
words are abelian equivalent, if they are permutations cfiether. Different abelian properties of words
are widely studied nowadays, such as abelian powers, ax@@daomplexity, abelian periods, etc. We
consider return words up to abelian equivalence: definimjjabreturns of a factor of an infinite word,
we consider all occurrences of factors abelian equivatentdnd the set of abelian returns is also defined
up to abelian equivalence. As the main result we prove thaird v8 Sturmian if and only if each of its
factors has two or three abelian returns. Notice that théaastwe used are different from ones used in
[3.16].

The paper is organized as follows. After a few preliminarfirdgons in Section 2, we discuss in
Section 3 connections between abelian returns and peitipdla Section 4, we state our main result
concerning characterization of Sturmian words. In Seddigve study the structure of abelian returns of
Sturmian words. We prove that every factor of a Sturmian wasltwo or three abelian returns; more-
over, a factor has two abelian returns if and only if it is silag. In Section 6 we prove the sufficiency of
the condition on the number of abelian returns for a word tStoemian.
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2 Preliminaries

We begin by presenting some basics on return words togeiitiekey definitions we use in the paper.

Given a finite non-empty sét (called the alphabet), we denote Byandz®, respectively, the set of
finite words and the set of (right) infinite words over the apét>. A wordv is afactor (resp. gorefix
resp. asuffiy of a wordw, if there exist words, y such thatw = xvy (resp.w = vy, resp.w = xv). The
set of factors of a finite or infinite wordl is denoted by (w). Given a finite wordu = ujuy. .. U, with
n> 1 andy; € Z, we denote the length of u by |u|. The empty word will be denoted ky/and we set
|e] = 0. We say that a wordr is periodig, if there existsI such thatv,, = w, for everyn. A word w is
aperiodig if it is not periodic.

Sturmian words can be defined in many different ways. For @kanthey are infinite words having
the smallest subword complexity among aperiodic words. Sutavord complexity of a word is the
function f(n) defined as the number of its factors of lengttFor Sturmian wordg (n) = n+ 1.

Let w=w;w,... be an infinite word. The wordav is recurrent if each of its factors occurs in-
finitely many times inw. In this case, foru € F(w), let ny < ny < ... be all integersn; such that
U= Wp ...Wny-1. Then the wordwy, ... Wy, 1 is areturn word (or briefly return) of uin w. An
infinite word has k returnsif each of its factors hak returns. The following characterization of Stur-
mian words via return words was established in [6]:

Theorem 1. [6] A recurrent infinite word has two returns if and only if it isu8nian.
Also there exists a simple characterization of periodigiyreturn words:

Proposition 1. [6] A recurrent infinite word is ultimately periodic if and onliythere exists a factor
having exactly one return word.

We now define the basic notions for the abelian case. Giventa fiordu = uiu,...u, withn>1
andy; € Z, for eacha € Z, we let|u|, denote the number of occurrences of the ledtér u. Two words
uandvin Z* areabelian equivalenif and only if |u|, = |V|, for all a € Z. We denote it byu~2°v. It is
easy to see that abelian equivalence is indeed an equieatelation or>*.

For an infinite recurrent worgv and foru € F(w), letn; < ny < ... be all integers; such that
Wiy« - Wiy g jul—1 ~2 u. Then the wordwy, ... Wp,,—1 is anabelian return word(or briefly abelian returr)
of uin w. We say thati has k abelian returnsf the set of its abelian returns consistsatbelian classes.
So, we actually consider abelian classes of returns toabelasses.

Example. Consider abelian returns of the factor 01 of the Thue-Morsedw
t =0110100110010110.

that is a fixed point of the morphism: p(0) = 01, u(1) = 10. The abelian class of 01 consists of
two words 01 and 10. Consider an occurrence of 01 startingsitipni, i.e.,t =0,t; = 1. It can
be followed by either O or 10, i.e. we have eitligr, =0 ortj.» =1, ti,3 = 0. In the first case we
havet;.1ti.» = 10, which is abelian equivalent to 01, and hence we have diealreturnt; = 0. In
the second cask, 1ti > = 11, which is not abelian equivalent to 01, so we consider @ factor
tiioti,3=10 ~3b 01, which gives the abelian retutiy 1 = 01. Symmetrically, 10 gives abelian returns
1 and 10. So, in total the abelian class of 01 has three aheliams: 0, 1 and 04:2° 10.

In this paper we establish a new characterization of Sturmvi@rds analogous to Theoréin 1. Namely,
we prove that a recurrent infinite word is Sturmian if and ahdach of its factors has two or three abelian
returns. On the other hand, contrary to property of beingnsian, abelian returns do not give a simple
characterization of periodicity analogous to Proposifion
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3 Abelian returns and periodicity

First we prove a simple sufficient condition for periodicity

Lemma 1. Let |Z| = k. If each factor of a recurrent infinite word over the alphafzehas at most k
abelian returns, then the word is periodic.

Proof. Let w be a recurrent word overlaletter alphabet, and letbe a factor ofv containing all letters
from the alphabet. Consider two occurrences iof w, say in positionsnandn (with m < n). Then the
abelian class ofvy,...wn_1 has all letters as abelian returns, and hence no more, leeeaesy factor of
w must have at modt abelian returns. Thus is periodic with perioch—m. O

Remark. Actually, this proves something stronger: letbe any aperiodic word over an alphaliet
|Z| = k, and letu be any factor ofv containingk distinct letters, and letu be any factor ofv distinct
from u beginning inu. Then the abelian class vimust have at leagtabelian returns. It follows that if a
word is not periodic, then for every positive integéthere exists an abelian factor of lengthN having
at leastkk + 1 abelian returns. In other words, the value 1 must be assumed infinitely often.

Remark. Notice that the condition given by Lemrha 1 is not necessaryéoiodicity. It is not difficult
to construct a periodic word such that some of its factor& mwore thark abelian returns.

Notice also that a characterization of periodicity simttaPropositiori Il in terms of abelian returns
does not exist. Moreover, in the case of abelian returnsas dwt hold in both directions. Consider an
infinite aperiodic word of the forrd11001011010GQ“. Itis easy to see that the factor 11 has one abelian
return 110010+2° 110100. So, the existence of a factor having one abeliamrelines not guarantee
periodicity. The converse is not true as well: there exigisr@odic word such that each of its factors has
at least two abelian returns. The example is given by theviatig word with period 24

w = (0011010010110011001100%1

To check that every factor of this word has at least two abe#durns, one can check the factors up to
the length 12. If we denote the periodwfby u, then every factov of length 12< | < 24 has the same
abelian returns as abelian class of words of length Pébtained fromu by deletingv. For a factor of
length longer than 24 its abelian returns coincide with iabeleturns of part of this factor obtained by
shortening it byu.

4 Characterization of Sturmian words

The main result of this paper is the following characteraabf Sturmian words:

Theorem 2. An aperiodic recurrent infinite word is Sturmian if and onfiyeach of its factors has two or
three abelian returns.

We prove this theorem in the following two sections. The ssitg of the condition on the number of
abelian returns is proved in Section 5, Propositibn 3; thficgncy is proved in Section 6, Proposition
[B. Due to space limitations, we give only a sketch of the panftting some of the details. We also
establish some properties of abelian returns of Sturmiasy@. g., we show that a factor of a Sturmian
word has two abelian returns if and only if it is singular (8&t 5, Theorem 4).
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5 The structure of abelian returns of Sturmian words

In this section we prove the “only if” part of Theordm 2, andaitidition we establish some properties
concerning the structure of abelian returns of Sturmiardsior

To describe the abelian returns for Sturmian words, we needdall some notation. A factar of
an infinite wordw is calledright special(left specia), if ua, ub (au, bu) are factors ofv for two distinct
lettersa, b. For a Sturmian word there exists exactly one right speeaielor of a fixed length. Note
also that the set of factors of a Sturmian word is closed unelersal. A factor idispecial if it is
right and left special. A factor of a Sturmian word is calldgularif it is the only factor in its abelian
class. Notice that singular factors have the f@Bg wherea is a letter and is a bispecial factor. The
following proposition follows directly from definitions drbasic properties of Sturmian words:

Proposition 2. Abelian returns of factors of a Sturmian word are eitherdettor of the form aBb, where
a = b are letters, and B is a bispecial factor.

Proof. Consider abelian return to a facterof length n starting at positiori. If w; = w;n, then the
letter w; is abelian return. v = a, wi,n = b, a # b, then there existk > 0, such thatvi ;... W,k =
Wit11n..-Witkaen, andwiiki1 7# Witkr1on. Sincew is balanced, we have thef. k.1 = b, Wiiki1.n = a.
SO,Wiiki2.. - Witkini1 ~2y andw;.. Wikl ~2ab Wiin.. -Wiikine1 iS abelian return te. By definition
the factorwi1... Wik =Wj111n...Wiikun IS bispecial. O

Corollary 1. In the case of Sturmian words, for each length 2 there exists at most one abelian return
of length I.

Now we proceed to the "only if” part of Theordm 2:
Proposition 3. Each factor of a Sturmian word has two or three abelian resurn

The proof of this proposition is based on the charactednatif balanced words presented|in [2]. We
will need some notation from the paper.

Suppose K p < q are positive integers such that gedg) = 1. Let #, 4 denote the set of all
wordsw € {0,1}9 with |w|; = p. If we #,q then the symbol 1 occurs with frequengyq in w.
Define theshift o : {0,1}® — {0,1}* by o(w); = wi;1. Similarly definec : {0,1}9 — {0,1}9 by
O(Wp...Wg—1) = W1...Wg_1Wo.

Since gedp, q) = 1 then any element 6%}, q has the least periog under the shift mag. We will
write w ~ W if there exists 0< k < g— 1 such thatv = g¥(w). In this case we say that, w arecyclically
conjugate or thatw, w are cyclic shifts of one another. The equivalence clasgw): 0 <i < g} of
eachw € % q contains exactly elements. Let

Woq=#paq/ ~

denote the corresponding quotient. Element$igfy are called orbits. It will usually be convenient to
denote an equivalence classWify, q by one of its elements.
Given an orbitw] € Wy q, let

W) <L W(1) <L " <L W(g-1)

denote the lexicographic ordering of its elements. Defireléiicographic arrayA[w| of the orbit|w]
to be theq x g matrix whoseith row is w;;). We will index this array by 0<i,j < g-— 1, so that

Alw] = (A[W];j )ﬂj;lo. For0<i,j <qg-—1, letw[j] denote the lengtlij + 1) prefix of wj;; so the\N(i>[j]
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are the length{ + 1) factors ofw, counted with multiplicity. For eachj this induces the following
lexicographic ordering:
Wo)[J] SLwpli] <o <L wg-p[i]-
Theorem 3. [2] Suppose v {0,1}9. The following are equivalent:
(1) w is a balanced word,
(2) w(i)[j]l < [w(i+1)[j]ls forall 0<i<g—2and0< j<qg-—1.

The following proposition from[]2] gives a very practical waf writing down the lexicographic
array associated to a balanced word.

Proposition 4. [2] Let [w] be the unique balanced orbit W 4. Define ue %} 4 by

u=0...01...1
—

p

Then, for0 < i,_j <qg-1,

(1) Alwij = (a'Pu);, .
(2) The jth column of Aw| is (the vector transpose of) the woadPu
(3) Wiy = Ui (aPu)i(a?Pu);... (0@ VPu);.

Example. Consider a balanced wowl= 0101001c %, 4. The lexicographic ordering ¢#] is
0010101<; 0100101<; 0101001< 0101010<; 1001010<; 1010010<, 1010100

so the corresponding lexicographic array is

0010101
0100101
0101001

Aw=| 0101010
1001010
1010010
1010100

We now apply the above technique for studying abelian retastfollows:

Fix a Sturmian words and a factow. We consider a standard factar(see, e. g.,[4]) ok of long
enough length to contamand all abelian returns ta Let |w| = g, |w|; = p. Then all the conjugates of
w are factors 0§, they are pairwise distinct, and gquq) = 1 (see, e. g/[5]). To be definite, we assume
thatv is "poor” in 1-s, i.e., it contains fewer 1's than the uniquber abelian class of the same length.
Then if we consider i\[w] the wordsw;[j], we have that there exists< q— 1 such thatv; [j] A~y
for 0 <i <n, andw;[j] #2vforn<i<q—1. Note also thaf\[w]im = AW (ig-p)(m+1); from now on
the indices are taken modudp

The lexicographic array allows to find abelian returns o the following way. For a wordi denote
by u[m,I] the factoruy...u. If forani, 0<i <n, we havew(i)[k,k+ il ~2y andk is the minimal
such length, them; [k — 1] is abelian return te. Notice also that iA[w];_1x = 1 andA[w]i = 0, then
W(m) [K, K+ j] ~®yform=i,....i+n. | e., we have exactlp+ 1 words from the abelian class of
starting in every column, and these words are in consecutivd rows (the first and the last row are
considered as consecutive).
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Example. Consider abelian returns to the abelian class of 001 in taeple abovew; (2] ~2b 001 for
0<i<4;w;[1,3) ~ 001 fori =4,5,6,0,1, w;[2,4] ~@ 001 fori = 1,...,5. So, the abelian returns
arewg) [0] =Wy [O] =0, Wia) [0] =1, W2 [1] = W3 [1] =01.

Proof of Propositiori B.Suppose that some facteof length j + 1 has 4 abelian returns, to be definite
let this factor be poor in 1, and in the lexicographic arraws O... n start with factors from the abelian
class ofv. By Corollary[1 there can be at most one abelian return of a fimegth greater than 1 (length
1 will be considered separately), so in a lexicographicyana have one of the following situations:

1) there exisk; < ky andn; < ny < n such thaw[j] has abelian returns of lengka fori =1,...,ny,
w;i[j] has abelian returns of lengka for i = ny + 1,...,n, andwy,.1[j] has abelian returns of length
greater tharko;

2) symmetric case: there exist < k, andn; < ny < n such thatw;[j] has abelian returns of lengka
fori=m+1,...,n, wi[j] has abelian returns of lengka for i = ny+1,...,n, andwy,[j] has abelian
returns of length greater thég.

We consider case 1) (for case 2) the proof is similar). Finstase 1) one can notice that the words
Wi, [K1, k1 + g] andwy, [k, k2 4 g] coincide. So if we consider abelian returns "to the left” lné twords
W, [K1, K1 + j] andwy, [k2, k2 + j], they should be the same, but they are not: the first one is\gfhds,
the second one is of lengia.

It remains to consider the case whehas both letters as abelian returns. It can be seen direatty f
the lexicographic array, that the third and the last retar@li (in this case after a word not from abelian
class ofv we will necessarily have a word from abelian class/of.e., the longest possible length of
abelian return is 2). O

Theorem 4. A factor of a Sturmian word has two abelian returns if and ahlyis singular.

Proof. The method of the proof is similar to the proof of ProposifBand relies upon the characterization
of balanced words from_ [2].

If a factor is singular, then it is the only word in its abeligass, so its abelian returns coincide with
usual returns. Since every factor of a Sturmian word has euarms [6], then a singular factor has two
abelian returns.

Now we will prove the converse, i.e., that if a factgr|v| = j + 1 of a Sturmian word has two
abelian returns, then it is singular.

As in the proof of Propositionl 3, we consider a standard fagtof s of long enough length to contain
v and all abelian returns tg and denotéw| = g, |w|; = p. Without loss of generality we again assume
thatv is "poor” in 1-s, so that there exists< q— 1 such thatw;;( j] ~vfor 0<i<n, andw)[j] #*®v
forn<i<g-1.

It is not difficult to see that two abelian returns are possiblone of the following cases:

Case 1) there exist@ m< n, 0 < ky,k, < g such thanN(i>[k1 —1] is abelian return for all &< i < m,
Wi [ko — 1] is abelian return for alin+ 1 <i <n;

Case 2) there exist @ my < mp < n, 0 < k; < kp < g such thatw; [k; — 1] is abelian return for all
O<i<mandmy+1<i<n w(i)[kz — 1] is abelian return for alim + 1 <i < my.

Case 1)In case 1) we will assume thiet < ky, the proof in casé, < ki is symmetric. We will consider
two subcases:

Case 1aAWlmk, = 1, AW (m; 1)k, = 0. This means thaw;[kz, ko + j] ~® vfori=m-+1,....m+n+1,
andAW|m,—1) = 0, AW|(mt1)(k,—1) = 1. S0, the elemerkw]m, 1), is a left-upper element of a block
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of abelian class of, andA[w|my,—1) is a right-lower element of another such block. It is easye®that
the latter block starts in columiy. Therefore|v| = j+ 1=k, —k; < ko.

In case 1a) we will prove that the abelian class/a@nsists of a single word, i.ew;)[j] = v for
i =0,...,n. Suppose thatv;[j] # W1)[j] for somei € {0,...,n—1}. Since the rows grow lexico-
gaphically, it means that there exists<0 < j < kp — 1 such thatAlw]; = 0, Ajlw]i1 = 1. Hence
A[W]i(|+1) =1, A[W](i+1)(|+1) =0, and SOW(i+1) [l +1,1+1+ j] ~y fm<i +1 < n, then the word
W(it1)[]] has returrw; 1 [I], which is impossible, because it has retugfjkz]. Similarly we get that the
case X i+1<mandl+1< k; isimpossible.

In case O0<i+1<mandk; <I+1<k;we getthat the wordy;,) [ki,ki+ j] has returwii ) [ka,!]
of lengthl —k; + 1. Butin this casev[l +1,1 +1+ |] ~®vfort=i+1,...,i+1+n. Contradiction with
the condition thatv, [ko — 1] is abelian return t(w(t)[j]. So,thecase € i+1<mandk; <l+1<ky
is impossible. Hencey;[j] = wi;q)[j] fori=0,...,n—1,i.e., the abelian class wfconsists of a single
word.

Case 1b)AW/mi, = 0 0r AlW](m, 1)k, = 1. This means tha/m [kz, kz + j] 2 v. Hence the woravy[j]
has abelian returmy, [ky] of lengthk, + 1, and the wordvy, [k, ki + j] has abelian returwqy [k, ko]
of lengthk, — ki + 1, so the returns are different. This is impossible singg = Wy, [ky, ki +qg— 1].

Case 2)in case 2) the fact thay; (k1] is abelian return for all & i <m; — 1 andmy+ 1 <i < nimplies
thatn > g/2. So,k; =1, i.e., we necessarily have return(s) of length 1. Sinceethee two abelian
returns totally, we can have only one return of length 1, &iglreturn is 0. It means th&fw)o = O for
0 <i < n. Sincewmy [, j+ 1] %% v andwm,1)[1, j + 1] #* v, we haveAWw]m,1 = 1, AW](m, 1)1 =0,
and hencé\[W|m,0 = 0, AlW|(m,+ 10 = 1. We get a contradiction witA[w]io =0 for 0<i <n.

So, the converse is proved, i.e., every factor of a Sturmiand\Wwaving two abelian returns is singular.
O

6 Proof of Theorem[2: the sufficiency

Here we prove the "if” part of Theorem 2, i.e., we establish tondition on the number of abelian
returns forcing a word to be Sturmian:

Proposition 5. If each factor of an aperiodic recurrent infinite word has tewothree abelian returns,
then the word is Sturmian.

The proof of this proposition is rather technical, it is hea considering abelian returns to different
possible factors of the infinite word and consecutive retstig the form of the word. Denote the non-
periodic word with 2 or 3 abelian returns by First we notice that Lemnid 1 implies that an aperiodic
word with 2 or 3 abelian returns must be binary, we denoterigtby O and 1w € {0,1}“. In the rest
of this section instead of abelian returns "to the left” wasider abelian returns "to the right”: vuis a
factor havingy ~2° v as its suffix, and/u does not contain as factors other words abelian equivatent t
v besides suffix and prefix, thenis abelian return t@. It is easy to see that no matter of the definition,
the set of abelian returns to each abelian factor is the sd@eugh this does not make any essential
difference, this modification of the definition is more comet for our proof of this proposition.

We say that a lettea is isolatedin a wordw € X%, if aais not a factor ofv. We will make use of the
following key lemma:

Lemma 2. If each factor of an aperiodic recurrent infinite word w hasmabst three abelian returns,
then one of the letters is isolated.
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Sketch of proof.In the proof of this lemma we will use the following definitioWe say that a letter
ac X appears in w in a series of length>k 0, if a word ba<c is factor ofw for some letters + a,

¢ # a. Considering abelian returns to letters, we get that ewstgrl can appear in series of at most three
different lengths. Denote these lengths for series of 0’k by, 13, wherel, < | < I3, for series of 1's

by j1, j2, j3, Wherej1 < j» < j3. Notice that a letter can appear in series of only two or ongtles, then
the third length or the third and the second lengths are ngssi

Consider abelian returns of the word'tGthey are 1, 011 for | =I5, I3 (if O appears in series of
corresponding lengths)] 110 for j = j1 > 1, j», j3 (if 1 appears in series of corresponding lengths) and
0 for j1 = 1. Some of these returns should be missing or abelian equivi others in order to have at
most three abelian returns totally. So we have the follovaages:

— j2, j3, I3 are missing, i.ew € {0'1112 02111} |n this case abelian returns are %, 01, and 1:-101
for jy > 21 orOforj;=1.

—15, I3, j3 are missing, i.ew € {011)1,01112}%, Abelian returns are 1,270, and 21201, if j; > 1,
or 0, if j; = 1.

— j2, jaare missingj; = 2,1 = 2l; orlz = 2ly, i.e.,w € ({0',0%1,0'}112)%, Abelian returns are 1,41,
0'~h1,

— 13, j3 are missing)y = 2l4, j1 =2 or j, = 2, w < ({01,0%1}{12,1/})®. Abelian returns are 1,"d,
11101 (if j > 1) or O (if j = 1).

Notice that the first two cases are symmetric. Considerirgjatb returns to the wordi10, we get
symmetric cases (0 change places withjllchange places with, k = 1,2,3). Combining the cases
obtained by considering abelian returns té 1€ith the cases obtained by considering abelian returns to
1110, we finally get the following remaining cases (up to renagietters):

1) j2, js, I3 are missing, i.ew s of the formw € {0'1111, 02111}«

2) |3, j3 are missingl1 =1, |2 = 2, jl = 2, j2 =4, i.e.we ({0,02}{12, 14})&)_
3)l3, jsaremissingl; = 1,1, =2, j1 =1, j, =2, i.e.we ({0,0°}{1,12}).
4) |3, j3 are missingl1 = 2, |2 =4, jl = 2, j2 =4. ie.we ({02,04}{12, 14})&)_
Case 1) w e {011},0°1}1.

In the first case we should prove that= 1. We omit index 1 for brevityj = j1. Suppose thaj > 1.
Consider abelian returns to the word210They are 1, 1-1(0"11/)%0 for all k > 0 such that the word
0'211(0'111)%0'2 is a factor ofw. Therefore, we have at most two valueskgprobably, including 0).

Abelian returns to the word @11 are 1,(0211)™0'"11 for all m> 0 such that the word 1@ (021))™0'11
is a factor ofw. So, we have at most two valuesraf(probably, including 0).

Taking into account conditions fan andk, which we have just obtained from considering abelian
returns to both 19 and 1011, we find that there are two opportunities for an aperiodicdva
Case la)w € ({(011))k (011))*}021))®, 0 < ky < ko. The word (#11011~* has returns 1, 'al,
0'2(110'1)*11 for all k such that the word'al}(0'11))k0'2 is a factor ofw. To provide at most three
abelian returnsy should admit only one value & Hencew is periodic and case 1a) is impossible.
Case 1b)w € (0'12) {(021))™ (021))™})?, 0 < my < mp. The word 1011101 has returns 1, 19
101(1/0'2)™1 for all msuch that the word 101 (0'211)M0'11 is a factor ofw. To provide at most three
abelian returnsy should admit only one value of. Hencew is periodic and case 1b) is impossible.

Thus, in case 1) 1's are isolated.

Cases 2)-4)n cases 2)-4) we need to consider words containing all feries, otherwise we get into
conditions of case 1) in which we proved that 1-s are isolafdue proof is similar for the three cases,
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and is based on studying abelian returns of certain type.nMreexaminav € ({0'1,02}, {111, 1)2})®,

we consider abelian returns to the wordsl® and (e1)2, and with a technical case study obtain that
if both words have at most three abelian returns, thes periodic. For brevity, we omit the details of
proof for cases 2)-4). O

Lemma 3. If w € {011,021}®, 0 < I; < I, is an aperiodic recurrent word and each of its factors has at
most three abelian returns, then= 11 + 1.

Proof. Suppose thak, > |1 +1. Consider abelian returns to the word'®: it has abelian returns 0
and ¥011)k10:*2 for all k > 0 such that D1(011)k0"2 is a factor ofw, thus there could be at most two
different values ok (probably, including 0). Consider abelian returns to thedvbd:10: it has abelian
returns 0 and0'2-110)/0"1~11 for all j > 0 such that 191(0'21)10'11 is a factor ofw, thus there could be
at most two different values & (probably, including 0). Sinces is non-periodic, we have two cases:

Case l:w € (021{(011)k,(011)%})%, 0 < k; < ko. In this case one can find four abelian returns to
0210171 0, 10172, (101)}a—1102-1, (101 )ke—2102—L,

Case Il:w € (011{(021)1,(021)12})®, 0 < j1 < j2. In this case one can find four abelian returns to
10210110: 0, ¢e—11, (02-110)12-10"1~11, (0'2-110) 21011, O

The proof of Lemmal2 and Lemrha 3 imply

Corollary 2. If each factor of an infinite aperiodic recurrent word w hasotar three abelian returns,
then we {0'11,01+11}©,

Lemma 4. If each of factors of an aperiodic recurrent infinite word wsheat most three abelian returns,
then w is2-balanced.

Proof. For a lengthn, consider abelian classes of factors of lengthf such wordw. Denote byA the
abelian class of factors containing the smallest numberofA= {u € Fn(w) : [u[s = minyg, ) [V]1}
The next class we denote By B = {u € Fn(W) : |u|y = Minyg, ) [V]1 + 1}, the next one bE. If w has
only two abelian classes, then it is Sturmian, so we aredated in the case whemhas at least three
abelian classes. For a lengthwe associate to a word a word& (" over the alphabet of abelian classes
of w of lengthn as follows: for an abelian cla$d of words of lengtn, Ek(”) =M iff wg...Wkyin_1 € M.

In other Words(Elﬁm)kzo is the sequence of abelian classes of consecutive factteagthn in w.
It is easy to see that(™ contains the following sequence of class€&i*Al2B for somejy, j» > 1,
i ; (n ") — CRIitAI
i.e. for some we haveg;™ ... &\ . j, 1 = CB*AI2B. Then we have
Wi =1, Wi n=0,
Wk = Wiin fork=i+1,...,i+j1—1,
Wi+j1 = 17Wi+j1+n = 07
Wk =Wiinfork=i+j1+21,....i+j1+ ]2,
Witji+j, = OaWi+j1+j2+n =1

l.e.,w e Wi jitj = 1ulvo, Witn.. . Witji+jo+n = OuOv1.

By Corollary[2 we havev € {0'11,01711}%, so|u| > 2l; + 1; u contains both letters 0 and 1 and has
a suffix 0. It follows that j, = 1. So, the clasB has the following 3 abelian returns;1001. All the
returns are of length at most 2, so if after an occurrend® Wt haveC, then the next class B again,
otherwise we will get a longer return. So there are no othesses than these. In addition, we proved
that if for lengthn there are three abelian classes, the&(ih lettersA andC are isolated. O
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Proof of Propositio b.Due to Corollary 2 and Lemnid 4, we have thais 2-balanced and it is of the
form {0'11,01711} for some integel;. Suppose thaw is not 1-balanced. Then there existior which
there exist three classes of abelian equivalendg,(w); as above, denote these classe#\bi andC.
Arguing as in the proof of Lemnid 4, consider a sequence o$esBCB AB which we necessarily have
in £ for some integey, denote its starting position by- 1. Corresponding factor iw is

Wi—1=0,Wi—14n =1,

Wi =1 Wiin= 0,

Wk =Wiipfork=i+4+1...i+j—1,
Witj =1L Witjin=0,

Witj+1 = 0,Wiyjr14n=1.

l.e,wi.. . Wiyjr1=1U10,Witn...Witjr14n=0u0l. Remark thatl = Wi 1... Wit has prefix 610.

Now consider abelian returns to an abelian cB8s= Al of lengthn+ 1. The factor starting from
the positioni + 1 is of the formBO so it belongs to this class, and has an abelian return 0. g w
starting from the position+ j is of the formBO and has an abelian return 1. The word starting from the
positioni + 11 — 1 belongs to this class, and has an abelian return 01. So veedhbmast three returns 0,

1 and 10. Now consider the occurrence of cla8s= Al to the left from the position+ 1. One can see
that the positions andi — 1 are from the clasB1 = CO, so the preceding occurrenceRff = Al has an
abelian return of length greater than 2, which is a fourtbrretthough there should be at most three. So
we cannot have more than two classes of abelian equivalerme aperiodic word having two or three
abelian returns, i.e., such word should be 1-balanced amceHgturmian. Propositidd 5 is proved. [

Remark. Actually, in Proposition b instead of recurrence propentg @an consider a weaker property
of abelian recurrence in the sense that for every fagtof w there exists a factar’ from the abelian
class ofu which occur infinitely many times iw.
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