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Abstract

Let {X (µ)t , t ≥ 0} be a Lévy process on Rd whose distribution at time 1 is µ, and let f be a
nonrandom measurable function on (0, a), 0 < a ≤ ∞. Then we can define a mapping Φ f (µ) by

the law of
∫ a

0
f (t)dX (µ)t , from D(Φ f ) which is the totality of µ ∈ I(Rd) such that the stochastic

integral
∫ a

0
f (t)dX (µ)t is definable, into a class of infinitely divisible distributions. For m ∈ N, let

Φm
f be the m times composition of Φ f itself. Maejima and Sato (2009) proved that the limits
⋂∞

m=1Φ
m
f (D(Φ

m
f )) are the same for several known f ’s. Maejima and Nakahara (2009) introduced

more general f ’s. In this paper, the limits
⋂∞

m=1Φ
m
f (D(Φ

m
f )) for such general f ’s are investigated

by using the idea of compositions of suitable mappings of infinitely divisible distributions.

1 Introduction

LetP (Rd) be the class of all probability distributions on Rd . Throughout this paper,L (X ) denotes
the law of an Rd -valued random variable X and bµ(z), z ∈ Rd , denotes the characteristic function
of µ ∈ P (Rd). Also I(Rd) denotes the class of all infinitely divisible distributions on Rd . Cµ(z), z ∈
Rd , denotes the cumulant function of µ ∈ I(Rd), that is, Cµ(z) is the unique continuous function
satisfying bµ(z) = eCµ(z) and Cµ(0) = 0. For µ ∈ I(Rd) and t > 0, we call the distribution with
characteristic function bµ(z)t = etCµ(z) the t-th convolution of µ and write µt for it. We use the
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Lévy-Khintchine triplet (A,ν ,γ) of µ ∈ I(Rd) in the sense that

Cµ(z) =−2−1〈z, Az〉+ i〈γ, z〉

+

∫

Rd

�

ei〈z,x〉 − 1− i〈z, x〉(1+ |x |2)−1
�

ν(d x), z ∈ Rd ,

where | · | and 〈·, ·〉 are the Euclidean norm and inner product on Rd , respectively, A is a symmetric
nonnegative-definite d × d matrix, γ ∈ Rd and ν is a measure (called the Lévy measure) on
Rd satisfying ν({0}) = 0 and

∫

Rd (|x |2 ∧ 1)ν(d x) < ∞. When we want to emphasize the Lévy-
Khintchine triplet, we write µ= µ(A,ν ,γ).
We use stochastic integrals with respect to Lévy processes {X t , t ≥ 0} of nonrandom measurable
functions f : [0,∞) → R, which are

∫ t

0
f (s)dXs, t ∈ [0,∞). As the definition of stochastic inte-

grals, we adopt the method in Sato [25, 26]. It is known that if f is locally square integrable on
[0,∞), then

∫ t

0
f (s)dXs, t ∈ [0,∞), is definable for any Lévy process {X t}. The improper stochas-

tic integral
∫∞

0
f (s)dXs is defined as the limit in probability of

∫ t

0
f (s)dXs as t → ∞ whenever

the limit exists. In our definition, {
∫ t

0
f (s)dXs, t ∈ [0,∞)} is an additive process in law, which is

not always càdlàg in t. If we take its càdlàg modification, the convergence of
∫ t

0
f (s)dXs above is

equivalent to the almost sure convergence of the modification as t →∞.
Let {X (µ)t , t ≥ 0} stand for a Lévy process on Rd with L (X (µ)1 ) = µ. Using this Lévy process, we
can define a mapping

Φ f (µ) =L
�
∫ a

0

f (t)dX (µ)t

�

, µ ∈D(Φ f )⊂ I(Rd), (1.1)

for a nonrandom measurable function f : [0, a)→ R, where 0 < a ≤∞ and D(Φ f ) is the domain

of a mapping Φ f that is the class of µ ∈ I(Rd) for which
∫ a

0
f (t)dX (µ)t is definable in the sense

above. Also, D0(Φ f ) denotes the totality of µ ∈ I(Rd) satisfying
∫ a

0
|Cµ( f (t)z)|d t < ∞ for all

z ∈ Rd . For a mapping Φ f , R(Φ f ) is its range that is {Φ f (µ) : µ ∈ D(Φ f )}. When we consider
the composition of two mappings Φ f and Φg , denoted by Φg ◦ Φ f , the domain of Φg ◦ Φ f is
D(Φg ◦ Φ f ) = {µ ∈ I(Rd) : µ ∈ D(Φ f ) and Φ f (µ) ∈ D(Φg)}. For m ∈ N, Φm

f means the m times
composition of Φ f itself.
A set H ⊂P (Rd) is said to be closed under type equivalence if L (X ) ∈ H implies L (aX + c) ∈ H
for a > 0 and c ∈ Rd . H ⊂ I(Rd) is called completely closed in the strong sense (abbreviated as
c.c.s.s.) if H is closed under type equivalence, convolution, weak convergence and t-th convolution
for any t > 0.
We list below several known mappings. In the following, Ilog(Rd) denotes the totality of µ ∈ I(Rd)
satisfying

∫

Rd log+ |x |µ(d x)<∞, where log+ |x |= (log |x |)∨ 0.

(1) U -mapping (Alf and O’Connor [1], Jurek [8]): Let

U (µ) =L

 

∫ 1

0

tdX (µ)t

!

, µ ∈D(U ) = I(Rd),

and let U(Rd) be the Jurek class on Rd . Then U(Rd) =U (I(Rd)).
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(2) Φ-mapping (Wolfe [30], Jurek and Vervaat [15], Sato and Yamazato [29]): Let

Φ(µ) =L
�
∫ ∞

0

e−t dX (µ)t

�

, µ ∈D(Φ) = Ilog(Rd),

and let L(Rd) be the class of selfdecomposable distributions on Rd . Then L(Rd) = Φ(Ilog(Rd)).

(3) Υ-mapping (Barndorff-Nielsen and Thorbjørnsen [6], Barndorff-Nielsen et al. [4]): Let

Υ(µ) =L

 

∫ 1

0

log
1

t
dX (µ)t

!

, µ ∈D(Υ) = I(Rd), (1.2)

and let B(Rd) be the Goldie–Steutel–Bondesson class on Rd . Then B(Rd) = Υ(I(Rd)).

(4) G -mapping (Maejima and Sato [18]): Let t = h(s) =
∫∞

s
e−u2

du, s > 0, and denote its inverse
function by s = h∗(t). Let

G (µ) =L

 

∫

p
π/2

0

h∗(t)dX (µ)t

!

, µ ∈D(G ) = I(Rd),

and let G(Rd) be the class of generalized type G distributions on Rd . Then G(Rd) = G (I(Rd)).

(5) Ψ-mapping (Barndorff-Nielsen et al. [4]): Let t = e(s) =
∫∞

s
u−1e−udu, s > 0, and denote its

inverse function by s = e∗(t). Let

Ψ(µ) =L
�
∫ ∞

0

e∗(t)dX (µ)t

�

, µ ∈D(Ψ) = Ilog(Rd),

and let T (Rd) be the Thorin class on Rd . Then T (Rd) = Ψ(Ilog(Rd)).

(6) M -mapping (Aoyama et al. [3]): Let t = m(s) =
∫∞

s
u−1e−u2

du, s > 0, and denote its inverse
function by s = m∗(t). Let

M (µ) =L
�
∫ ∞

0

m∗(t)dX (µ)t

�

, µ ∈D(M ) = Ilog(Rd).

We call M(Rd) :=M (Ilog(Rd)) the class M and it was actually introduced in Aoyama et al. [3] in
the symmetric case.

Remark 1.1. Jurek [13] introduced the mapping

K (e)(µ) =L
�
∫ ∞

0

tdX (µ)1−e−t

�

,

which is the same as Υ in (1.2) by the time change of the driving Lévy process. In the same way,
it holds that

G (µ) =L
�
∫ ∞

0

tdX (µ)p
π/2−h(t)

�

.

Using this type of time change, we might avoid taking inverse functions as integrands of stochastic
integral mappings. However, recently in Sato [27], Barndorff-Nielsen et al. [5] and other pa-
pers, they have used stochastic integral mappings whose integrands are some inverse functions
and driving Lévy processes have original time parameter. In this paper, we also use this type of
expressions.
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Here we also introduce mappings Φα,α < 2, (O’Connor [21, 22], Jurek [9, 10, 11], Jurek and
Schreiber [14], Sato [27], Maejima et al. [16]). Let

t = ϕα(s) =

∫ 1

s

u−α−1du, s ≥ 0,

and let s = ϕ∗α(t) be its inverse function. Define

Φα(µ) =L

 

∫ ϕα(0)

0

ϕ∗α(t)dX (µ)t

!

.

Then,

Φα(µ) =







































L

 

∫ −1/α

0

(1+αt)−1/αdX (µ)t

!

, when α < 0,

L
�
∫ ∞

0

e−t dX (µ)t

�

, when α= 0,

L
�
∫ ∞

0

(1+αt)−1/αdX (µ)t

�

, when 0< α < 2.

Furthermore, we introduce mappings Ψα,β ,α < 2,β > 0. Let

t = Gα,β(s) =

∫ ∞

s

u−α−1e−uβ du, s ≥ 0,

and let s = G∗α,β(t) be its inverse function. Define

Ψα,β(µ) =L

 

∫ Gα,β (0)

0

G∗α,β(t)dX (µ)t

!

,

where

Gα,β(0) =

¨

β−1Γ(−αβ−1), when α < 0,

∞, when α≥ 0.

These mappings are introduced first by Sato [27] for β = 1 and later by Maejima and Nakahara
[17] for general β > 0. Due to Sato [27], Maejima and Nakahara [17], we have the domains
D(Φα) and D(Ψα,β) as follows. Let β > 0.

D(Φα) =D(Ψα,β) =























I(Rd), when α < 0,

Ilog(Rd), when α= 0,

Iα(Rd), when 0< α < 1,

I∗1(R
d), when α= 1,

I0
α(R

d), when 1< α < 2,
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where

Iα(Rd) =

¨

µ ∈ I(Rd):

∫

Rd

|x |αµ(d x)<∞
«

, for α > 0,

I0
α(R

d) =

¨

µ ∈ Iα(Rd):

∫

Rd

xµ(d x) = 0

«

, for α≥ 1,

I∗1(R
d) =

(

µ= µ(A,ν ,γ) ∈ I0
1 (R

d): lim
T→∞

∫ T

1

t−1d t

∫

|x |>t

xν(d x) exists in Rd

)

.

Since Φ0 = Φ, Φ−1 = U , Ψ−1,1 = Υ, Ψ−1,2 = G , Ψ0,1 = Ψ and Ψ0,2 =M , the mappings Φα and
Ψα,β are important. Also, Maejima and Nakahara [17] characterized the classes R(Ψα,β),α <
1,β > 0 by conditions of radial components in the polar decomposition of Lévy measures.
Define nested subclasses Lm(Rd), m ∈ Z+ of L(Rd) in the following way: µ ∈ Lm(Rd) if and only if
for each b > 1, there exists ρb ∈ Lm−1(Rd) such that bµ(z) = bµ(b−1z)bρb(z), where L0(Rd) :=
L(Rd). Hereafter we denote the closure under weak convergence and convolution of a class
H ⊂ P (Rd) by H. For α ∈ (0, 2], let Sα(Rd) be the class of all α-stable distributions on Rd

and let S(Rd) =
⋃

α∈(0,2] Sα(R
d). Then, the limit L∞(Rd) :=

⋂∞
m=0 Lm(Rd) is known to be equal

to S(Rd). In Sato [24] or Rocha-Arteaga and Sato [23], this is proved via the following fact:
µ= µ(A,ν ,γ) ∈ L∞(Rd) if and only if

ν(B) =

∫

(0,2)

Γ(dα)

∫

S

λα(dξ)

∫ ∞

0

11B(rξ)r
−α−1dr, B ∈B(Rd \ {0}),

where Γ is a measure on (0, 2) satisfying

∫

(0,2)

�

1

α
+

1

2−α

�

Γ(dα)<∞,

and λα is a probability measure on S := {ξ ∈ Rd : |ξ| = 1} for each α ∈ (0,2), and λα(C) is
measurable in α ∈ (0, 2) for every C ∈ B(S). This Γ is uniquely determined by µ and this λα
is uniquely determined by µ up to α of Γ-measure 0. For the case in more general spaces, see
Jurek [7]. For a set A ∈ B ((0, 2)), let LA

∞(R
d) denote the class of µ ∈ L∞(Rd) with Γ satisfying

Γ((0,2) \ A) = 0. It is also known that for m ∈ N, R(Φm) = Lm−1(Rd). Hence
⋂∞

m=1 R(Φm) =

L∞(Rd) = S(Rd). In Maejima and Sato [18], nested subclasses R(U m), R(Υm), R(Ψm) and
R(Gm), m ∈ N, were studied and the limits of these nested subclasses were proved to be equal to
S(Rd), (see also Jurek [12]). Furthermore, Sato [28] proved that the mappings Ψα,1,α ∈ (0, 2)

produce smaller classes than S(Rd) as the limit of iteration. Maejima and Ueda [19] showed that
the mapping Φα has the same iterated limit as that of Ψα,1 for α ∈ (0, 2). Maejima and Ueda [20]

also constructed a mapping producing a larger class than S(Rd), which is the closure of the class
of semi-stable distributions with a fixed span.
The purpose of this paper is to find the limit of the nested subclasses R(Ψm

α,β), m ∈ N. For that,
we start with the composition of Ψα−β ,β and Φα, which will be used for characterizing the nested
subclasses R(Ψm

α,β), m ∈ N.
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2 Results

For β > 0, let

Kβ(µ) = µβ =L

 

∫ β

0

dX (µ)t

!

, µ ∈D(Kβ) = I(Rd).

The following lemma is trivial.

Lemma 2.1. For β > 0 and any mapping Φ f defined by (1.1) with a locally square-integrable
function f , we have

Kβ ◦Φ f = Φ f ◦Kβ .

Here

D(Kβ ◦Φ f ) =D(Φ f ◦Kβ) =D(Φ f ).

The following result on composition will be a key in the proof of the main theorem, Theorem 2.4.

Theorem 2.2. Let α ∈ (−∞, 1)∪ (1, 2) and β > 0. Then

Ψα,β =Kβ ◦Φα ◦Ψα−β ,β =Kβ ◦Ψα−β ,β ◦Φα,

including the equality of the domains.

Remark 2.3. Theorem 2.2 with β = 1 is included in Theorem 3.1 of Sato [27]. Also, the case
α= 0 was already proved by Aoyama et al. [2].

Our main result of this paper is the following theorem on the limits of the nested subclasses
R(Ψm

α,β) which is
⋂∞

m=1 R(Ψm
α,β).

Theorem 2.4. Let β > 0. Then

∞
⋂

m=1

R(Ψm
α,β) =







L∞(Rd), for α ∈ (−∞, 0],
L(α,2)
∞ (Rd), for α ∈ (0, 1),

L(α,2)
∞ (Rd)∩ I0

1 (R
d), for α ∈ (1, 2) \ {1+ nβ : n ∈ N}.

Remark 2.5. Theorem 2.4 for the case −1≤ α < 0,β > 0 follows immediately from Theorem 3.4
of Maejima and Sato [18]. Maejima and Sato [18] also proved the case α= 0,β = 1. Furthermore,
the case β = 1,α ∈ (0,2) was already proved by Sato [28]. The case α = 0 is found in Aoyama
et al. [2].

We also have the following.

Theorem 2.6. Let β > 0 and α ∈ (−∞, 2) \ {1+ nβ : n ∈ Z+}. Then

∞
⋂

m=1

R(Ψm
α,β) =R(Ψα,β)∩ S(Rd). (2.1)



Compositions of mappings of infinitely divisible distributions 233

3 Proofs

We first prove Theorem 2.2.

Proof of Theorem 2.2. For µ ∈ I(Rd), we have

β

∫ ϕα(0)

0

du

∫ Gα−β ,β (0)

0

�

�

�Cµ
�

G∗α−β ,β(v)ϕ
∗
α(u)z

�
�

�

� dv

= β

∫ 1

0

s−α−1ds

∫ ∞

0

�

�Cµ(tsz)
�

� tβ−α−1e−tβ d t

= β

∫ 1

0

s−β−1ds

∫ ∞

0

�

�Cµ(uz)
�

�uβ−α−1e−s−βuβ du

= β

∫ ∞

0

�

�Cµ(uz)
�

�uβ−α−1du

∫ 1

0

s−β−1e−s−βuβ ds

=

∫ ∞

0

�

�Cµ(uz)
�

�u−α−1du

∫ ∞

uβ
e−vdv

=

∫ ∞

0

�

�Cµ(uz)
�

�u−α−1e−uβ du=

∫ Gα,β (0)

0

�

�

�Cµ
�

G∗α,β(t)z
�
�

�

� d t.

(3.1)

Let α < 0. Then D(Ψα,β) =D(Kβ ◦Ψα−β ,β ◦Φα) =D(Kβ ◦Φα ◦Ψα−β ,β) = I(Rd) and Propositions
3.4 and 2.17 of Sato [26] yields the finiteness of (3.1). Then we can use Fubini’s theorem and
have

∫ Gα,β (0)

0

Cµ
�

G∗α,β(t)z
�

d t = β

∫ ϕα(0)

0

du

∫ Gα−β ,β (0)

0

Cµ
�

G∗α−β ,β(v)ϕ
∗
α(u)z

�

dv

= β

∫ Gα−β ,β (0)

0

dv

∫ ϕα(0)

0

Cµ
�

G∗α−β ,β(v)ϕ
∗
α(u)z

�

du,

(3.2)

by a similar calculation to (3.1). This yields that

Ψα,β(µ) =Kβ ◦Φα ◦Ψα−β ,β(µ) =Kβ ◦Ψα−β ,β ◦Φα(µ). (3.3)

Let α ∈ [0, 1)∪ (1, 2). Let µ ∈ D(Ψα,β). Note that the domains D(Ψα,β) and D(Φα) are the same
and decreasing in α < 2 with respect to set inclusion due to Remark to Theorem 2.8 of Sato [27].
Then µ ∈D(Ψα−β ,β)∩D(Φα). We have that

β

∫ ϕα(0)

0

�

�

�CΨα−β ,β (µ)(ϕ
∗
α(u)z)

�

�

� du

and

β

∫ Gα−β ,β (0)

0

�

�

�CΦα(µ)(G
∗
α−β ,β(v)z)

�

�

� dv

are not greater than (3.1). Take into account that D(Ψα,β) = D0(Ψα,β) for α ∈ (−∞, 1) ∪ (1,2)
and β > 0 due to Theorem 2.4 of Sato [27]. Then µ ∈ D0(Ψα,β), which yields the finiteness of
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(3.1). Therefore Ψα−β ,β(µ) ∈ D(Kβ ◦Φα) and Φα(µ) ∈ D(Kβ ◦Ψα−β ,β). Hence µ ∈ D(Kβ ◦Φα ◦
Ψα−β ,β)∩D(Kβ ◦Ψα−β ,β ◦Φα).
If µ ∈D(Kβ ◦Ψα−β ,β ◦Φα), then µ ∈D(Φα) =D(Ψα,β).
Let µ ∈ D(Kβ ◦ Φα ◦Ψα−β ,β). Then Ψα−β ,β(µ) ∈ D(Φα). Let µ = µ(A,ν ,γ) and Ψα−β ,β(µ) = eµ =
eµ(eA,eν ,eγ). If α= 0, then

∞>
∫

|x |>1

log |x |eν(d x) =

∫ ∞

0

tβ−1e−tβ d t

∫

|t x |>1

log |t x |ν(d x),

which yields that
∫

|t x |>1
log |t x |ν(d x) < ∞ a.e. t > 0. Hence µ ∈ Ilog(Rd) = D(Ψ0,β). If α ∈

(0,1)∪ (1,2), then

∞>
∫

|x |>1

|x |αeν(d x) =

∫ ∞

0

tβ−α−1e−tβ d t

∫

|t x |>1

|t x |αν(d x),

which yields that
∫

|t x |>1
|x |αν(d x) < ∞ a.e. t > 0. Hence µ ∈ Iα(Rd) = D(Ψα,β) for α ∈ (0,1).

Let α ∈ (1, 2). Then eµ ∈D(Φα) = I0
α(R

d). It follows that

eγ=−
∫

Rd

x |x |2

1+ |x |2
eν(d x) =−

∫ ∞

0

tβ−α−1e−tβ d t

∫

Rd

t x |t x |2

1+ |t x |2
ν(d x)

and

eγ= lim
ε↓0

∫ ∞

ε

tβ−αe−tβ d t

¨

γ+

∫

Rd

x
�

1

1+ |t x |2
−

1

1+ |x |2

�

ν(d x)

«

.

Hence

lim
ε↓0

∫ ∞

ε

tβ−αe−tβ
�

γ+

∫

Rd

x |x |2

1+ |x |2
ν(d x)

�

d t = 0,

which yields that γ+
∫

Rd
x |x |2

1+|x |2 ν(d x) = 0. Therefore µ ∈ I0
α(R

d) =D(Ψα,β).
Thus we conclude that D(Ψα,β) =D(Kβ ◦Ψα−β ,β ◦Φα) =D(Kβ ◦Φα◦Ψα−β ,β) for α ∈ [0,1)∪(1, 2).
If µ ∈D(Ψα,β) =D0(Ψα,β), then (3.1) is finite and we have (3.2) and (3.3).

Let

Cα(Rd) :=

(

µ= µ(A,ν ,γ) ∈ I(Rd): lim
r→∞

rα
∫

|x |>r

ν(d x) = 0

)

,

C 0
α (R

d) :=Cα(Rd)∩ I0
1 (R

d).

We need the following lemma in the proof below.

Lemma 3.1 (Corollary 4.2 of Maejima and Ueda [19]). Let H ⊂ I(Rd) be c.c.s.s.

(i) If α≤ 0 and H ⊃ S(Rd), then

∞
⋂

m=1

Φm
α (H ∩D(Φm

α )) = S(Rd).
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(ii) If 0< α < 1 and H ⊃
⋃

β∈[α,2] Sβ(R
d), then

∞
⋂

m=1

Φm
α

�

H ∩D(Φm
α )
�

=
⋃

β∈[α,2]

Sβ(Rd)∩Cα(Rd).

(iii) If 1< α < 2 and H ⊃
⋃

β∈[α,2] Sβ(R
d), then

∞
⋂

m=1

Φm
α

�

H ∩D(Φm
α )
�

=
⋃

β∈[α,2]

Sβ(Rd)∩C 0
α (R

d).

Here S(Rd) and
⋃

β∈[α,2] Sβ(R
d) are c.c.s.s., (see e.g. Proposition 3.12 (i) and Theorem 3.20 of

Maejima and Ueda [19]).

To prove Theorem 2.4, it is sufficient to show the following, due to Theorem 4.6 of Maejima and
Ueda [19] that is Theorem 2.4 with the replacement of Ψα,β by Φα.

Theorem 3.2. Let β > 0 and α ∈ (−∞, 2) \ {1+ nβ : n ∈ Z+}. Then we have

∞
⋂

m=1

R(Ψm
α,β) =

∞
⋂

m=1

R(Φm
α ). (3.4)

Proof. Lemma 2.1 and Theorem 2.2 yield that for α ∈ (−∞, 1)∪ (1,2), β > 0 and m ∈ N,

R(Ψm
α,β) =R(Φm

α ◦Ψ
m
α−β ,β ◦K

m
β )

= Φm
α

�

R(Ψm
α−β ,β ◦K

m
β )∩D(Φm

α )
�

= Φm
α

�

Ψm
α−β ,β

�

R(K m
β )∩D(Ψm

α−β ,β)
�

∩D(Φm
α )
�

= Φm
α

�

Ψm
α−β ,β

�

R(Kβm)∩D(Ψm
α−β ,β)

�

∩D(Φm
α )
�

= Φm
α

�

Ψm
α−β ,β

�

I(Rd)∩D(Ψm
α−β ,β)

�

∩D(Φm
α )
�

= Φm
α

�

R(Ψm
α−β ,β)∩D(Φm

α )
�

.

(3.5)

Fix any β > 0.
We first show

∞
⋂

m=1

R(Ψm
α,β) =

∞
⋂

m=1

R(Φm
α ) for all α < (nβ)∧ 1, (3.6)

for each n ∈ N by induction. Let n = 1. For α < β ∧ 1, Proposition 3.2 of Maejima and Sato [18]
entails that H :=

⋂∞
k=1 R(Ψk

α−β ,β) is c.c.s.s. Also, Lemma 3.7 of Maejima and Sato [18] yields that

H ⊃ S(Rd). It follows from (3.5) that for m ∈ N,

Φm
α

�

H ∩D(Φm
α )
�

⊂R(Ψm
α,β)⊂R(Φm

α ).

Thus Lemma 3.1 yields (3.6) with n = 1. Assume that (3.6) is true for n− 1 in place of n with
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n≥ 2. Then for α < (nβ)∧ 1, it follows that α− β < ((n− 1)β)∧ 1. Therefore

∞
⋂

k=1

R(Ψk
α−β ,β) =

∞
⋂

k=1

R(Φk
α−β)

=

(

S(Rd), when α− β ≤ 0
⋃

γ∈[α−β ,2] Sγ(R
d)∩Cα−β(Rd), when 0< α− β < 1,

by the assumption of induction and Lemma 3.1. When α− β ≤ 0, it follows from (3.5) that for
m ∈ N,

Φm
α

�

S(Rd)∩D(Φm
α )
�

⊂R(Ψm
α,β)⊂R(Φm

α ),

which yields (3.6) by Lemma 3.1. When 0< α− β < 1, it follows from (3.5) that for m ∈ N,

Φm
α







⋃

γ∈[α−β ,2]

Sγ(Rd)∩D(Φm
α )






⊂R(Ψm

α,β)⊂R(Φm
α ), (3.7)

since D(Φm
α ) ⊂ D(Φα) ⊂ Iα(Rd) ⊂ Iα−β(Rd) ⊂ Cα−β(Rd). Thus Lemma 3.1 yields (3.6). Then

(3.6) is true for all n ∈ N, namely, (3.4) holds for all α < 1.
We next show

∞
⋂

m=1

R(Ψm
α,β) =

∞
⋂

m=1

R(Φm
α ) for all α ∈

�

1+ (n− 1)β , 1+ nβ
�

∩ (−∞, 2), (3.8)

for each n ∈ Z+ by induction. If n = 0, then α < 1 and we have just shown the case. Assume that
(3.8) holds for n− 1 in place of n with n ≥ 1. Then for α ∈

�

1+ (n− 1)β , 1+ nβ
�

∩ (−∞, 2), it
follows that α− β ∈

�

1+ (n− 2)β , 1+ (n− 1)β
�

∩ (−∞, 2). Then the assumption of induction
and Lemma 3.1 yields that

∞
⋂

k=1

R(Ψk
α−β ,β) =

∞
⋂

k=1

R(Φk
α−β)

=







S(Rd), when α− β ≤ 0
⋃

γ∈[α−β ,2] Sγ(R
d)∩Cα−β(Rd), when 0< α− β < 1,

⋃

γ∈[α−β ,2] Sγ(R
d)∩C 0

α−β(R
d), when 1< α− β < 2.

When α− β < 1, (3.8) holds by the same argument as above. When 1 < α− β < 2, the same
inclusion as (3.7) follows from (3.5), since D(Φm

α ) ⊂ D(Φα) ⊂ I0
α(R

d) ⊂ I0
α−β(R

d) ⊂ C 0
α−β(R

d).
Therefore Lemma 3.1 yields (3.8). Then (3.8) is true for all n ∈ Z+. Thus (3.4) holds for all
α ∈ (1, 2) \ {1+ nβ : n ∈ N}.

We finally prove Theorem 2.6.

Proof of Theorem 2.6. (3.5) with m= 1 yields that R(Ψα,β)⊂R(Φα). Also we have

∞
⋂

m=1

R(Φm
α ) =R(Φα)∩ S(Rd),
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which is Theorem 5.2 of Maejima and Ueda [19]. Then we have

R(Ψα,β)∩ S(Rd)⊂R(Φα)∩ S(Rd) =
∞
⋂

m=1

R(Φm
α ) =

∞
⋂

m=1

R(Ψm
α,β),

where the last equality follows from Theorem 3.2. Furthermore, we have that

∞
⋂

m=1

R(Ψm
α,β)⊂R(Ψα,β),

and that
∞
⋂

m=1

R(Ψm
α,β) =

∞
⋂

m=1

R(Φm
α ) =R(Φα)∩ S(Rd)⊂ S(Rd).

Thus
⋂∞

m=1 R(Ψm
α,β)⊂R(Ψα,β)∩ S(Rd). Therefore (2.1) holds.
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