Capacity Estimates, Boundary Crossings and the Ornstein-Uhlenbeck Process in Wiener Space
Davar Khoshnevisan (University of Utah)
Zhan Shi (Université Paris VI)
Abstract
Let $T_1$ denote the first passage time to 1 of a standard Brownian motion. It is well known that as $\lambda$ goes to infinity, $P\{ T_1 > \lambda \}$ goes to zero at rate $c \lambda^{-1/2}$, where $c$ equals $(2/ \pi)^{1/2}$. The goal of this note is to establish a quantitative, infinite dimensional version of this result. Namely, we will prove the existence of positive and finite constants $K_1$ and $K_2$, such that for all $\lambda>e^e$, $$K_1 \lambda^{-1/2} \leq \text{Cap} \{ T_1 > \lambda\} \leq K_2 \lambda^{-1/2} \log^3(\lambda) \cdot \log\log(\lambda),$$ where `$\log$' denotes the natural logarithm, and $\text{Cap}$ is the Fukushima-Malliavin capacity on the space of continuous functions.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 103-109
Publication Date: November 20, 1999
DOI: 10.1214/ECP.v4-1011
References
- Csáki, E., Khoshnevisan, D. and Shi, Z., Boundary crossings and the distribution function of the maximum of Brownian sheet. Preprint. Math Review Number not available
- Fukushima, M., Basic properties of Brownian motion and a capacity on the Wiener space. J. Math. Soc. Japan 36, (1984) 161-176 Math. Review 85h:60114
- Malliavin, P., Stochastic calaculus of variation and hypoelliptic operators. Proc. International Symp. Stoch. Diff. Eq. (Kyoto 1976), pp. 195-263. Wiley, New York, 1978 Math. Review 81f:60083
- Uchiyama, K., Brownian first exit from and sojourn over one sided moving boundary and applications. Z. Wahrsch. Verw. Gebiete, 54, pp. 75-116, 1980 Math. Review 82c:60143
- Williams, D., Appendix to P.-A. Meyer: Note sur les processus d'Ornstein-Uhlenbeck. Sém. de Probab. XVI. Lecture Notes in Mathematics, 920, p. 133. Springer, Berlin, 1982. Math. Review 84i:60103

This work is licensed under a Creative Commons Attribution 3.0 License.