Geodesics and Recurrence of Random Walks in Disordered Systems
Jean-Marc Derrien (Université de Bretagne Sud)
Abstract
In a first-passage percolation model on the square lattice $Z^2$, if the passage times are independent then the number of geodesics is either $0$ or $+\infty$. If the passage times are stationary, ergodic and have a finite moment of order $\alpha > 1/2$, then the number of geodesics is either $0$ or $+\infty$. We construct a model with stationary passage times such that $E\lbrack t(e)^\alpha\rbrack < \infty$, for every $0 < \alpha < 1/2$, and with a unique geodesic. The recurrence/transience properties of reversible random walks in a random environment with stationary conductances $( a(e);e$ is an edge of $\mathbb{Z}^2)$ are considered.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 101-115
Publication Date: May 15, 2002
DOI: 10.1214/ECP.v7-1052
References
- BERGER, N. Transience, Recurrence and Critical Behavior for Long-Range Percolation. Preprint.
- BREIMAN, L. (1968) Probability, Addison-Wesley Series in Statistics. Addison-Wesley Publishing Company, Reading, Mass. MR 37 #4841
- BURTON, R. and KEANE, M. (1989) Density and uniqueness in percolation. Comm. Math. Phys. 121 501 - 505. MR 90g:60090
- DE MASI, A., FERRARI, P.A., GOLDSTEIN, S. and WICK, W.D. (1989) An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Stat. Phys. 55 787-855. MR 91e:60107
- DOYLE, P. and SNELL, J.L. (1984) Random walks and electrical networks. The Carus Mathematical Monographs, 22 The Mathematical Association of America. John Wiley & Sons, New York. MR
- DURRETT, R. (1986) Multidimensional random walks in random environments with subclassical limiting behavior, Comm. Math. Phys. 104 87 - 102. MR 87h:60126
- GRIMMETT, G. (1989) Percolation. Springer-Verlag. New York. MR 90j:60109
- GRIMMETT, G.R., KESTEN, H. and ZHANG, Y. (1993) Random walk on the infinite cluster of the percolation model. Probab. Theory Relat. Fields 96 33-44. MR 94i:60078
- HAMMERSLEY, J.M. and WELSH, D.J.A. (1965) First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. Bernoulli-Bayes-Laplace Anniversary Volume , J. Neyman and L.M. LeCam, eds. pp. 61-110, Springer-Verlag New York, N.Y. MR 33 #6731
- KOZLOV, S.M. (1985) The averaging method and walks in inhomogeneous environments. Russ. Math. Surv. 40 73-145 ; translation from Usp. Mat. Nauk 40 61-120. MR 87b:60104
- KRENGEL, U. (1985) Ergodic Theorems. De Gruyter Studies in Mathematics, 6. Berlin-New York: Walter de Gruyter. MR 87i:28001
- LICEA, C. and NEWMAN, C. (1996) Geodesics in two-dimensional first-passage percolation. Ann. Probab. 24 399 - 410. MR 97c:60238
- LYONS, T. (1983) A simple criterion for transience of a reversible Markov chain. Ann. Probab. 11 393-402. MR 84e:60102
- NEWMAN, C. M. (1997) Topics in disordered systems. Lectures in Mathematics, ETH Z" urich. Basel: Birkhäuser. MR 99e:82052
- PERES, Y. (1999) Probability on trees: An introductory climb. Bertoin, J. (ed.) et al., Lectures on probability theory and statistics. Ecole d'été de Probabilités de Saint-Flour XXVII-1997, Saint-Flour, France, July 7-23, 1997. Berlin: Springer. Lect. Notes Math. 1717, 193-280. MR 2001c:60139
- WEHR, J. (1997) On the Number of Infinite Geodesics and Ground States in Disordered Systems. J. Stat. Physics 87 439 -447. MR 98k:82087

This work is licensed under a Creative Commons Attribution 3.0 License.