Smoothness of the law of the supremum of the fractional Brownian motion
David Nualart (Universitat de Barcelona)
Abstract
This note is devoted to prove that the supremum of a fractional Brownian motion with Hurst parameter $H\in \left( 0,1\right)$ has an infinitely differentiable density on $\left( 0,\infty \right)$. The proof of this result is based on the techniques of the Malliavin calculus.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 102-111
Publication Date: September 15, 2003
DOI: 10.1214/ECP.v8-1079
References
- Albramowitz, A. and Stegun, S. (1979), Handbook of Mathematical Functions, Nauka, Moskow. MR 81j:00014
- Airault, H. and Malliavin, P. (1988), Integration géometrique sur l'espace de Wiener, Bull. Sci. Math. 112, 3-52. MR 89f:60072
- Alòs, E. and Nualart, D. (2003), Stochastic calculus with respect to the fractional Brownian motion, Stochastics and Stochastics Reports 75, 129-152. Math. Review number not available.
- Decreusefond, L. and Üstünel, A.S. (1998), Stochastic analysis of the fractional Brownian motion, Potential Anal. 10, 177-214. MR 2000b:60133
- Florit, C. and Nualart, D. (1995), A local criterion for smoothness of densities and application to the supremum of the Brownian sheet, Statistics and Probability Letters, 22, 25-31. MR 96d:60081
- Garsia, A., Rodemich, E. and Rumsey, H. (1970/71), A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. Journal, 20, 565-578. MR 42#2534
- Nualart, D. (1995), The Malliavin calculus and related topics, Springer Verlag. MR 96k:60130
- Samko, S. G., Kilbas, A.A. and Mariachev, O. I. (1993), Fractional integrals and derivatives, Gordon and Breach Sience. MR 96d:26012
- Vives, J. and Nualart, D. (1988), Continuité absolue de la loi du maximum d'un processus continu, C. R. Acad. Sci. Paris, 307, 349-354. MR 89i:60082

This work is licensed under a Creative Commons Attribution 3.0 License.