The Center of Mass of the ISE and the Wiener Index of Trees
Philippe Chassaing (Institut Elie Cartan)
Abstract
We derive the distribution of the center of mass S of the integrated superBrownian excursion (ISE) from the asymptotic distribution of the Wiener index for simple trees. Equivalently, this is the distribution of the integral of a Brownian snake. A recursion formula for the moments and asymptotics for moments and tail probabilities are derived.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 178-187
Publication Date: December 30, 2004
DOI: 10.1214/ECP.v9-1088
References
- D. Aldous. Tree-based models for random distribution of mass. J. Statist. Phys. 73 (1993), 625-641. Math. Review 94k:60130
- D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25 (1997), 812-854. Math. Review 98d:60019
- J. Ambjorn, B. Durhuus, T. Jónsson. Quantum gravity, a statistical field theory approach. Cambridge Monographs on Mathematical Physics (1997) Cambridge University Press. Math. Review number not available.
- N.H. Bingham, C.M. Goldie, J.L. Teugels. Regular variation. Encyclopedia of Mathematics and its Applications 27 (1989) Cambridge University Press. Math. Review 90i:26003
- C. Borgs, J. Chayes, R. van der Hofstad, G. Slade. Mean-field lattice trees. On combinatorics and statistical mechanics. Ann. Comb. 3 (1999), 205-221. Math. Review 2001i:82036
- P. Chassaing, G. Schaeffer. Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields 128 (2004), 161-212. Math. Review 2004k:60016
- L. Davies. Tail probabilities for positive random variables with entire characteristic functions of very regular growth. Z. Angew. Math. Mech. 56 (1976), T334-T336. Math. Review 0431331
- J.F. Delmas. Computation of moments for the length of the one dimensional ISE support. Electron. J. Probab. 8 (2003), 15 pp. . Math. Review 2041818
- A. Dembo, O. Zeitouni. Large deviations techniques and applications. Applications of Mathematics 38 (1998) Springer-Verlag. Math. Review 99d:60030
- A. Dembo, O. Zeitouni. Large deviations for random distribution of mass. Random discrete structures (Minneapolis, MN, 1993), 1989. IMA Vol. Math. Appl.76 (1996), 45-53. Math. Review 97d:60051
- E. Derbez, G. Slade. The scaling limit of lattice trees in high dimensions. Comm. Math. Phys. 193 (1998), 69-104. Math. Review 99b:60138
- S. Janson. The Wiener index of simply generated random trees. Random Structures Algorithms 22 (2003), 337-358. Math. Review 2004b:05186
- Y. Kasahara. Tauberian theorems of exponential type. J. Math. Kyoto Univ. 18 (1978), 209-219. Math. Review 80g:40008
- J.F. Le Gall. Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zurich (1999) Birkhauser Verlag. Math. Review 2001g:60211
- J.F. Marckert, A. Mokkadem. States spaces of the snake and its tour-convergence of the discrete snake. J. Theoret. Probab. 16 (2003), 1015-1046. Math. Review 2033196
- L. Serlet. A large deviation principle for the Brownian snake. Stochastic Process. Appl. 67 (1997), 101-115. Math. Review 98j:60041
- G. Slade. Scaling limits and super-Brownian motion. Notices Amer. Math. Soc. 49 (2002), 1056-1067. Math. Review 2003g:60170
- J. Spencer. Enumerating graphs and Brownian motion. Comm. Pure Appl. Math. 50 (1997), 291-294. Math. Review 97k:05105
- E. M. Wright. The number of connected sparsely edged graphs. J. Graph Theory 1 (1977), 317-330. Math. Review 0463026

This work is licensed under a Creative Commons Attribution 3.0 License.