Finite dimensional determinants as characteristic functions of quadratic Wiener functionals
Abstract
We show a method and the structure to calculate the characteristic functions of quadratic Wiener functionals by using classical Weierstrass-Hadamard's theory on entire functions. We also examine the idea by an example for Gaussian processes with multiple Markovian property.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 26--35
Publication Date: March 22, 2004
DOI: 10.1214/ECP.v9-1091
References
- T. Chan. Indefinite quadratic functions of Gaussian processes as least action paths. Ann. Inst. H. Poincaré Probab. Statist. 27 No.2, (1991), 239--271. Math. Review 1118937 (93d:60063)
- S. Coleman. The Uses of Instantons. in The Whys of Subnuclear Physics" (Erice, 1977, Ed. A.~Zichichi), Plenum, New York, (1979), 805--941.
- K. Hara and N. Ikeda. Quadratic Wiener functionals and dynamics on Grassmannians. Bull. Sci. math. 125, No.6-7, (2001), 481--528. Math. Review 1869989 (2002j:60151)
- N. Ikeda, S. Kusuoka, and S. Manabe. Lévy's stochastic area formula for Gaussian processes. Comm. Pure and Applied Math., XLVII, (1994), 329--360. Math. Review 1266245 (95h:60086)
- N. Ikeda, S. Kusuoka, and S. Manabe. Lévy's stochastic area formula and Related Problems. Proc. Pure. Math. AMS 57, (1995), 281--305. Math. Review 1335477 (96f:60092)
- N. Ikeda and S. Manabe. Asymptotic formulae for stochastic oscillatory integrals. in Proceeding of the Taniguchi International Symposium on Asymptotic Problems in Probability Theory (Sanda and Kyoto, Ed., K.~D.~Elworthy and N.~Ikeda), Pitman Research Note in Math., 284, Logman, Essex, (1993). Math. Review 1354166 (97j:60098)
- N. Ikeda and S. Manabe. Van Vleck-Pauli formula for Wiener integrals and Jacobi fields, in Itô's Stochastic calculus and Probability theory", Springer, (1996), 141--156. Math. Review 1439522 (98g:81110)
- N. Ikeda and S. Taniguchi. Quadratic Wiener functionals, Kalman-Bucy filters, and the KdV equation, in Stochastic Analysis and Related Topics in Kyoto (Kyoto, 2002), Advanced Studies in Pure Mathematics, to appear.
- H. Matsumoto and S. Taniguchi. Wiener functionals of second order and their Lévy measures. Electronic Journal of Probability 7, No.14, (2002), 1--30. Math. Review 1921743 (2003f:60145)

This work is licensed under a Creative Commons Attribution 3.0 License.