When Does a Randomly Weighted Self-normalized Sum Converge in Distribution?
Joel Zinn (Texas A&M University, USA)
Abstract
We determine exactly when a certain randomly weighted, self--normalized sum converges in distribution, partially verifying a 1965 conjecture of Leo Breiman. We, then, apply our results to characterize the asymptotic distribution of relative sums and to provide a short proof of a 1973 conjecture of Logan, Mallows, Rice and Shepp on the asymptotic distribution of self--normalized sums in the case of symmetry.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 70-81
Publication Date: April 16, 2005
DOI: 10.1214/ECP.v10-1135
References
-
N.H. Bingham, and J.L. Teugels. Conditions implying
domains of attraction. Proceedings of the Sixth Conference on Probability Theory (Bracsov, 1979), (1981) pp. 23--34, Ed. Acad. R. S.
Romania, Bucharest. Math. Review 0633913
-
N.H. Bingham , C. M. Goldie and J. L. Teugels.
Regular Variation. Encyclopedia of Mathematics and its Applications, (1987) 27,
Cambridge University Press, Cambridge.
Math. Review 0898871
-
L. Breiman, On some limit theorems similar to the arc-sin
law. Teor. Verojatnost. i Primenen (1965) 10, pp. 351--360. Math. Review 0184274
-
G. P. Chistyakov and F. Götze Limit distributions of
studentized sums. Ann. Probab., (2004) 32, 28--77. Math. Review 2040775
-
D. A. Darling. The influence of the maximum term in the
addition of independent random variables. Trans. Amer. Math. Soc.(1952)
73, 95-107.Math. Review 0048726
-
A. Devinatz. On a theorem of Lévy-Raikov. Ann.
Math. Statist (1959) 30, 583--586. Math. Review 0102851
-
E. Giné:, F. Götze and D. M. Mason. When is the
Student $t$-statistic asymptotically standard normal? Ann. Probab. (1997)
25 1514--1531. Math. Review 1457629
-
P. S. Griffin and , D. M. Mason. On the asymptotic
normality of self--normalized sums. Proc. Cambridge Phil. Soc. (1991) 109
597-610. Math. Review 1094756
-
E. Haeusler and D. M. Mason. On the asymptotic behavior of
sums of order statistics from a distribution with a slowly varying upper
tail. In: Sums, Trimmed Sums and Extremes. (M. G. Hahn, D. M. Mason
and D. C. Weiner, ed.) (1991) pp. 355--376. Birkhäuser, Boston. Math. Review 1117277
-
I. A. Ibragimov and Yu. V. Linnik. Independent and
Stationary Sequences of Random Variables. With a Supplementary Chapter by I.
A. Ibragimov and V. V. Petrov. Translation from the Russian edited by J. F.
C. Kingman (1971) Wolters-Noordhoff Publishing, Groningen. Math. Review 0322926
-
R. LePage, M. Woodroofe and J. Zinn. Convergence to a
stable distribution via order statistics. Ann. Probab (1981) 9
713--752. Math. Review 0624688
-
G. D. Lin. On the moment problems. Statist. Probab.
Lett. (1997) 35 85--90. Math. Review 1467713
-
B. F. Logan, C. L. Mallows, S. O. Rice and L. Shepp.
Limit distributions of self-normalized sums. Ann. Probab. (1973) 1
788--809. Math. Review 0362449
-
B. Ramachandran and K. Lau. Functional Equations in
Probability Theory. Academic Press, Inc., Boston, MA (1991). Math. Review 1132671
-
V. M. Zolotarev. One-dimensional Stable Distributions.
Translated from the Russian by H. H. McFaden. Translation edited by Ben
Silver. Translations of Mathematical Monographs, 65. American Mathematical
Society, Providence, RI. (1986). Math. Review 0854867

This work is licensed under a Creative Commons Attribution 3.0 License.