Random Walk Attracted by Percolation Clusters
Marina Vachkovskaia (Universidade de Campinas, Brasil)
Abstract
Starting with a percolation model in $\mathbb{Z}^d$ in the subcritical regime, we consider a random walk described as follows: the probability of transition from $x$ to $y$ is proportional to some function $f$ of the size of the cluster of $y$. This function is supposed to be increasing, so that the random walk is attracted by bigger clusters. For $f(t)=e^{\beta t}$ we prove that there is a phase transition in $\beta$, i.e., the random walk is subdiffusive for large $\beta$ and is diffusive for small $\beta$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 263-272
Publication Date: December 21, 2005
DOI: 10.1214/ECP.v10-1167
References
- D. Aldous, J.A. Fill. Reversible Markov Chains and Random Walks on Graphs. Math. Review number not available.
- M.T. Barlow. Random walk on supercritical percolation clusters. Ann. Probab. 32 (2004), 3024-3084. Math. Review 2094438
- M.T. Barlow, E.A. Perkins. Symmetric Markov chains in Zd: how fast can they move? Prob. Th. Rel. Fields 82 (1989), 95-108. Math. Review 90j:60067
- N. Berger, N. Gantert, Y. Peres. The speed of biased random walk on percolation clusters. Prob. Th. Rel. Fields 126 (2003), 221-242. Math. Review 2004h:60149
- D. Boivin, J. Depauw. Spectral homogenization of reversible random walks on Zd in a random environment. Stochastic Process. Appl. 104 (2003), 29-56. Math. Review 2004e:60162
- T.K. Carne. A transmutation formula for Markov chains. Bull. Sc. Math. (2) 109 (1985), 399-405. Math. Review 87m:60142
- L.R.G. Fontes, M. Isopi, C.M. Newman. Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension. Ann. Probab. 30 (2002), 579-604. Math. Review 2003e:60229
- L.R.G. Fontes, P. Mathieu. On symmetric random walks with random conductancies on Zd. Preprint.
- G.R. Grimmett. Percolation. Springer, Berlin (1999). Math. Review 2001a:60114
- G.R. Grimmett, H. Kesten, Y. Zhang. Random walk on the infinite cluster of the percolation model. Prob. Th. Rel. Fields 96 (1993), 33-44. Math. Review 94i:60078
- H. Kesten. Subdiffusive behaviour of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), 425-487. Math. Review 88b:60232
- M.V. Menshikov. Coincidence of critical points in percolation problems. Sov. Math. Doklady 33 (1986), 856-859. Math. Review 88k:60175
- S.V. Nagaev. Large deviations of sums of independent random variables. Ann. Probab. 7 (1979), 745-789. Math. Review 80i:60032
- L. Saloff-Coste. Lectures on Finite Markov Chains. Lectures on probability theory and statistics (Saint-Flour, 1996), Lecture Notes in Math. 1665 (1997) 301-413, Springer, Berlin. Math. Review 99b:60119
- A.S. Sznitman. On the anisotropic random walk on the supercritical percolation cluster. Commun. Math. Phys. 240 (2003), 123-148. Math. Review 2004f:60208
- N.Th. Varopoulos. Long range estimates for Markov chains. Bull. Sc. Math. (2) 109 (1985), 225-252. Math. Review 87j:60100

This work is licensed under a Creative Commons Attribution 3.0 License.