Pathwise uniqueness for reflecting Brownian motion in certain planar Lipschitz domains
Krzysztof Burdzy (University of Washington)
Abstract
We give a simple proof that in a Lipschitz domain in two dimensions with Lipschitz constant one, there is pathwise uniqueness for the Skorokhod equation governing reflecting Brownian motion.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 178-181
Publication Date: August 30, 2006
DOI: 10.1214/ECP.v11-1213
References
- M. Barlow, K. Burdzy, H. Kaspi and A. Mandelbaum. Variably skewed Brownian motion Electr. Comm. Probab. 5 (2000), paper 6, pp. 57-66. Math. Review 2001j:60146
- R. Bass, K. Burdzy and Z. Chen. Uniqueness for reflecting Brownian motion in lip domains Ann. I. H. Poincar\'e 41 (2005) 197-235. Math. Review 2005k:60174
- R. Bass and E.P. Hsu, Pathwise uniqueness for reflecting Brownian motion in Euclidean domains. Probab. Th. Related Fields 117 (2000) 183-200. Math. Review 2001e:60164
- I. Karatzas and S.E. Shreve. Brownian Motion and Stochastic Calculus, 2nd Edition, Springer Verlag, New York, 1991. Math. Review 92h:60127
- D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd ed. Springer, Berlin, 1999. Math. Review 2000h:60050

This work is licensed under a Creative Commons Attribution 3.0 License.