Some Extensions of Fractional Brownian Motion and Sub-Fractional Brownian Motion Related to Particle Systems
Luis G Gorostiza (Centro de Investigacion y de Estudios Avanzados, Mexico)
Anna Talarczyk (Institute of Mathematics, University of Warsaw)
Abstract
In this paper we study three self-similar, long-range dependence, Gaussian processes. The first one, with covariance $$ \int^{s\wedge t}_0 u^a [(t-u)^b+(s-u)^b]du, $$ parameters $a>-1$, $-1 < b\leq 1$, $|b|\leq 1+a$, corresponds to fractional Brownian motion for $a=0$, $-1 < b < 1$. The second one, with covariance $$ (2-h)\biggl(s^h+t^h-\frac{1}{2}[(s+t)^h +|s-t|^h]\biggr), $$ parameter $0 < h\leq 4$, corresponds to sub-fractional Brownian motion for $0 < h < 2 $. The third one, with covariance $$ -\left(s^2\log s + t^2\log t -\frac{1}{2}[(s+t)^2 \log (s+t) +(s-t)^2 \log |s-t|]\right), $$ is related to the second one. These processes come from occupation time fluctuations of certain particle systems for some values of the parameters.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 161-172
Publication Date: May 16, 2007
DOI: 10.1214/ECP.v12-1272
References
- Bojdecki, T.; Gorostiza, L. G.; Talarczyk, A. Fractional Brownian density process and its self-intersection local time of order $k$. J. Theoret. Probab. 17 (2004), no. 3, 717--739. MR2091558(2005j:60076)
- Bojdecki, Tomasz; Gorostiza, Luis G.; Talarczyk, Anna. Sub-fractional Brownian motion and its relation to occupation times. Statist. Probab. Lett. 69 (2004), no. 4, 405--419. MR2091760 (2005k:60124)
- Bojdecki, T.; Gorostiza, L. G.; Talarczyk, A. Limit theorems for occupation time fluctuations of branching systems. I. Long-range dependence. Stochastic Process. Appl. 116 (2006), no. 1, 1--18. MR2186101 (2007b:60083)
- Bojdecki, T.; Gorostiza, L.G.; Talarczyk, A. A long range dependence stable process and an infinite variance branching system. Ann. Probab. 35 (2007), no. 2, 500--527.
- Bojdecki, T.; Gorostiza, L.G.; Talarczyk, A. Occupation time limits of inhomogeneous Poisson systems of independent particles, Stoch. Proc. Appl. (to appear).
- Bojdecki, T.; Gorostiza, L.G.; Talarczyk, A. Self-similar stable processes arising from high density limits of occupation times of particle systems, in preparation.
- Theory and applications of long-range dependence. Edited by Paul Doukhan, George Oppenheim and Murad S. Taqqu. Birkhäuser Boston, Inc., Boston, MA, 2003. xii+719 pp. ISBN: 0-8176-4168-8 MR1956041 (2003h:60004)
- Dzhaparidze, Kacha; van Zanten, Harry. A series expansion of fractional Brownian motion. Probab. Theory Related Fields 130 (2004), no. 1, 39--55. MR2092872 (2005i:60065)
- Fernique, Xavier. Intégrabilité des vecteurs gaussiens. (French) C. R. Acad. Sci. Paris Sér. A-B 270 1970 A1698--A1699. MR0266263 (42 #1170)
- Gorostiza, Luis G.; Wakolbinger, Anton. Persistence criteria for a class of critical branching particle systems in continuous time. Ann. Probab. 19 (1991), no. 1, 266--288. MR1085336 (91k:60089)
- Houdré, Christian; Villa, José. An example of infinite dimensional quasi-helix. Stochastic models (Mexico City, 2002), 195--201, Contemp. Math., 336, Amer. Math. Soc., Providence, RI, 2003. MR2037165 (2004m:60077)
- Iscoe, I. A weighted occupation time for a class of measure-valued branching processes. Probab. Theory Relat. Fields 71 (1986), no. 1, 85--116. MR0814663 (87c:60070)
- Kallenberg, Olav. Foundations of modern probability. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2 MR1876169 (2002m:60002)
- Russo, Francesco; Tudor, Ciprian A. On bifractional Brownian motion. Stochastic Process. Appl. 116 (2006), no. 5, 830--856. MR2218338(2006k:60070)
- Talarczyk, A. A functional ergodic theorem for the occupation time process of a branching system, (submitted).
- Taqqu, M.S. Self-similarity and long-range dependence, 10th Brazilian School of Probability and 2006 Annual Meeting of the Institute of Mathematical Statistics, IMPA, Rio de Janeiro, August, 2006.
- Tudor, Constantin. Some properties of mild solutions of delay stochastic evolution equations. Stochastics 17 (1986), no. 1-2, 1--18. MR0878551 (89k:60084)
- Tudor, C. Inner product spaces of integrands associated to sub-fractional Brownian motion, preprint.
- Tudor C.A.; Xiao, Y. Sample path properties of bifractional Brownian motion, Math. ArXiv PR/0606753.

This work is licensed under a Creative Commons Attribution 3.0 License.