A relation between dimension of the harmonic measure, entropy and drift for a random walk on a hyperbolic space
Abstract
We establish in this paper an exact formula which links the dimension of the harmonic measure, the asymptotic entropy and the rate of escape for a random walk on a discrete subgroup of the isometry group of a Gromov hyperbolic space. This completes a result obtained by the author in a previous paper, where only an upper bound for the dimension was proved.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 45-53
Publication Date: February 2, 2008
DOI: 10.1214/ECP.v13-1350
References
- A. Avez. Entropie des groupes de type fini. C. R. Acad. Sci. Paris, SÃr. A 275 (1972), 1363--1366. Math. Review :0324741
- S. BlachÃre, P. HaÃssinsky, and P. Mathieu. Harmonic measures versus quasiconformal measures for hyperbolic groups. preprint (2007).
- M. Coornaert. Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov. Pacific Journal of Mathematics 159 (1993), 241--270. Math. Review 94m:57075
- M. Coornaert, T. Delzant, A. Papadopoulos. GÃomÃtrie et thÃorie des groupes : les groupes hyperboliques de Gromov. Lecture Notes in Math. 1441 (1990), Springer. Math. Review 92f:57003
- Y. Derriennic. Quelques applications du thÃorÃme ergodique sous-additif. Asterisque 74 (1980), 183--201. Math. Review 82e:60013
- E. Ghys, P. De La Harpe (eds.). Sur les Groupes Hyperboliques d'aprÃs Mikhael Gromov. Birkhâ°user, Basel (1990). Math. Review 92f:53050
- M. Gromov. Hyperbolic groups. Essays in Group Theory (S.M. Gersten, ed.), MSRI Publ. 8 (1987), Springer, New York, 75--263. Math. Review 89e:20070
- V. A. Kaimanovich. Hausdorff dimension of the harmonic measure on trees. Ergod. Th. & Dynam. Sys. 18 (1998), 631--660. Math. Review 99g:60123
- V. A. Kaimanovich. The Poisson formula for groups with hyperbolic properties. Annals of Mathematics 152 (2000), 659--692. Math. Review 2002d:60064
- F. Ledrappier. Une relation entre entropie, dimension et exposant pour certaines marches alÃatoires. C. R. Acad. Sci. Paris, SÃr. I 296 (1983), 369--372. Math. Review 84e:60106
- V. Le Prince. Dimensional properties of the harmonic measure for a random walk on a hyperbolic group. Trans. of the AMS 359 (2007), 2881--2898. Math. Review 2286061
- Ya. B. Pesin. Dimension theory in dynamical systems. Chicago Lect. Notes in Math. (1997). Math. Review 99b:58003
- L. S. Young. Dimension, entropy and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 2 (1982), 109--124. Math. Review 84h:58087

This work is licensed under a Creative Commons Attribution 3.0 License.