A functional limit theorem for a 2d-random walk with dependent marginals
Arnaud Le Ny (Université Paris Sud)
Abstract
We prove a non-standard functional limit theorem for a two dimensional simple random walk on some randomly oriented lattices. This random walk, already known to be transient, has different horizontal and vertical fluctuations leading to different normalizations in the functional limit theorem, with a non-Gaussian horizontal behavior. We also prove that the horizontal and vertical components are not asymptotically independent.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 337-351
Publication Date: June 20, 2008
DOI: 10.1214/ECP.v13-1386
References
- P. Billingsley. Convergence of probability measures. 2nd edition, Wiley, New York, (1999). MR1700749
- M. Campanino and D. Pétritis. On the physical relevance of random walks: an example of random walks on randomly oriented lattices "Random walks and geometry", V. Kaimanovitch (ed.), Walter de Gruyter (2004), 393--411. MR2087791
- M. Campanino and D. Pétritis. Random walks on randomly oriented lattices. Mark. Proc. Rel. Fields 9 (2003), 391-412. MR2028220
- C. Dombry and N. Guillotin-Plantard. Discrete approximation of a stable self-similar stationary increments process. To appear in Bernoulli (2008).
- N. Guillotin-Plantard and A. Le Ny. Transient random walks in dimension two. Theo. Probab. Appl. 52, No 4 (2007), 815--826.
- H. Kesten and F. Spitzer. A limit theorem related to a new class of self similar processes. Z. Wahrsch. Verw. Gebiete 50, (1979), 5--25. MR0550121
- J.F. Le Gall. Mouvement Brownien, processus de branchement et superprocessus. Notes de Cours de DEA, Ecole Normale SupÃrieure. Available on the website of E.N.S., rue d'Ulm, dÃpartement de mathÃmatiques (1994).
- D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer (1991). MR1083357

This work is licensed under a Creative Commons Attribution 3.0 License.