Intersection probabilities for a chordal SLE path and a semicircle
Michael J Kozdron (University of Regina)
Abstract
We derive a number of estimates for the probability that a chordal SLE$_\kappa$ path in the upper half plane $\mathbb{H}$ intersects a semicircle centred on the real line. We prove that if $0<\kappa <8$ and $\gamma:[0,\infty) \to \overline{\mathbb{H}}$ is a chordal SLE$_\kappa$ in $\mathbb{H}$ from $0$ to $\infty$, then $P\{\gamma[0,\infty) \cap \mathcal{C}(x;rx) \neq \emptyset\} \asymp r^{4a-1}$ where $a=2/\kappa$ and $\mathcal{C}(x;rx)$ denotes the semicircle centred at $x>0$ of radius $rx$, $00$. For $4<\kappa<8$, we also estimate the probability that an entire semicircle on the real line is swallowed at once by a chordal SLE$_\kappa$ path in $\mathbb{H}$ from $0$ to $\infty$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 448-460
Publication Date: August 14, 2008
DOI: 10.1214/ECP.v13-1399
References
- Alberts, T. and Sheffield, S. Hausdorff dimension of the SLE curve intersected with the real line. To appear, Electron. J. Probab. Math. Review number not available.
- Beffara, V. Hausdorff dimensions for SLE6. Ann. Probab. 32 (2004), 2606-2629. MR2078552
- Dubédat, J. SLE and triangles. Electron. Comm. Probab. 8 (2003), 28-42. MR1961287
- Garban, C. and Trujillo Ferreras, J.A. The expected area of the filled planar Brownian loop is π/5. Comm. Math. Phys. 264 (2006), 797-810. MR2217292
- Kennedy, T. Monte Carlo Tests of Stochastic Loewner Evolution Predictions for the 2D Self-Avoiding Walk. Phys. Rev. Lett., 88 (2003), 130601. Math. Review number not available.
- Lawler, G.F. Conformally Invariant Processes in the Plane, volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005. MR2129588
- Rohde, S. and Schramm, O. Basic properties of SLE. Ann. Math. 161 (2005), 883-924. MR2153402
- Schramm, O. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000), 221-288. MR1776084
- Schramm, O. A percolation formula. Electron. Comm. Probab. 6 (2001), 115--120 (electronic). MR1871700
- Schramm, O. and Zhou, W. Boundary proximity of SLE. Available online at arXiv:0711.3350. Math. Review number not available.

This work is licensed under a Creative Commons Attribution 3.0 License.