Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion
Ivan Nourdin (Laboratoire de Probabilités et Modèles Aléatoires)
Abstract
Let $q\geq 2$ be a positive integer, $B$ be a fractional Brownian motion with Hurst index $H\in(0,1)$, $Z$ be an Hermite random variable of index $q$, and $H_q$ denote the $q$th Hermite polynomial. For any $n\geq 1$, set $V_n=\sum_{k=0}^{n-1} H_q(B_{k+1}-B_k)$. The aim of the current paper is to derive, in the case when the Hurst index verifies $H>1-1/(2q)$, an upper bound for the total variation distance between the laws $\mathscr{L}(Z_n)$ and $\mathscr{L}(Z)$, where $Z_n$ stands for the correct renormalization of $V_n$ which converges in distribution towards $Z$. Our results should be compared with those obtained recently by Nourdin and Peccati (2007) in the case where $H<1-1/(2q)$, corresponding to the case where one has normal approximation.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 482-493
Publication Date: September 26, 2008
DOI: 10.1214/ECP.v13-1415
References
- A. Begyn. Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes. Bernoulli 13 (2007), 712--753. Math. Review 2348748
- J.-C. Breton. Convergence in variation of the joint laws of multiple Wiener-Itô integrals. Stat. Probab. Letters 76 (2006), 1904--1913. Math. Review 2271186
- P. Breuer and P. Major. Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13 (1983), 425--441. Math. Review 0716933
- J.-F. Coeurjolly. Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Statist. Infer. Stoch. 4 (2001), 199-227. Math. Review 1856174
- Y. A. Davydov and G. V. Martynova. Limit behavior of multiple stochastic integral. Statistics and control of random process. Preila, Nauka, Moscow (1987), 55--57 (in Russian). Math. Review 1079335
- R. L. Dobrushin and P. Major. Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. verw. Gebiete 50 (1979), 27--52. Math. Review 0550122
- L. Giraitis and D. Surgailis. CLT and other limit theorems for functionals of Gaussian processes. Z. Wahrsch. verw. Gebiete 70 (1985), 191--212.Math. Review 0799146
- J. Istas and G. Lang. Quadratic variations and estimators of the H"older index of a Gaussian process. Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), 407-436. Math. Review 1465796
- I. Nourdin. Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion. To appear in: Ann. Probab.
- I. Nourdin, D. Nualart and C.A. Tudor. Central and non-central
limit theorems for weighted power variations of fractional Brownian
motion. Preprint.
- I. Nourdin and G. Peccati. Stein's method on Wiener chaos. To appear in: Probab. Th. Related Fields.
- D. Nualart. The Malliavin Calculus and Related Topics. Springer Verlag. Second edition, 2006. Math. Review 2200233
- D. Nualart. Stochastic calculus with respect to the fractional Brownian motion and applications. Contemp. Math. 336 (2003), 3-39. Math. Review 2037156
- M. Taqqu. Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. verw. Gebiete 50 (1979), 53-83. Math. Review 0550123
- C.A. Tudor and F. Viens.Variations and estimators for the selfsimilarity order through Malliavin calculus. Preprint.

This work is licensed under a Creative Commons Attribution 3.0 License.