Reflected Brownian motion in a wedge: sum-of-exponential stationary densities
J. Moriarty (University of Manchester)
Abstract
We give necessary and sufficient conditions for the stationary density of semimartingale reflected Brownian motion in a wedge to be written as a finite sum of terms of exponential product form. Relying on geometric ideas reminiscent of the reflection principle, we give an explicit formula for the density in such cases.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-16
Publication Date: January 12, 2009
DOI: 10.1214/ECP.v14-1437
References
- I.J.-B.F. Adan, J. Wessels and W.H.M. Zijm. Analysis of the asymmetric shortest queue problem. Queueing Systems Theory Appl. 8 (1991), no. 1, 1--58. MR1099343
- I.J.-B.F. Adan, J. Wessels and W.H.M. Zijm. A compensation approach for two-dimensional Markov processes. Adv. in Appl. Probab. 25 (1993), no. 4, 783--817. MR1241929
- F. Avram, J.G. Dai and J.J. Hasenbein. Explicit solutions for variational problems in the quadrant. Queueing Syst. 37 (2001), no. 1-3, 259--289. MR1833666
- P. Biane, P. Bougerol and N. O'Connell. Littelmann paths and Brownian paths. Duke Math. J. 130 (2005), no. 1, 127--167. MR2176549
- J.G. Dai. Steady-state analysis of reflected Brownian motions: characterization, numerical methods and queueing applications. Ph.D. thesis, Stanford University (1990).
- J.G. Dai and J.M. Harrison. Reflected Brownian motion in an orthant: numerical methods for steady-state analysis. Ann. Appl. Probab. 2 (1992), no. 1, 65--86. MR1143393
- A.B. Dieker and J. Warren. Determinantal transition kernels for some interacting particles on the line. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008), no. 6, 1162--1172.
- J. Dubédat. Reflected planar Brownian motions, intertwining relations and crossing probabilities. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004), no. 5, 539--552. MR2086013
- P. Dupuis and K. Ramanan. A time-reversed representation for the tail probabilities of stationary reflected Brownian motion. Stochastic Process. Appl. 98 (2002), no. 2, 253--287. MR1887536
- P. Dupuis and R.J. Williams. Lyapunov functions for semimartingale reflecting Brownian motions. Ann. Probab. 22 (1994), no. 2, 680--702. MR1288127
- G.J. Foschini. Equilibria for diffusion models of pairs of communicating computers---symmetric case. IEEE Trans. Inform. Theory 28 (1982), no. 2, 273--284. MR0651627
- F.G. Foster. On the stochastic matrices associated with certain queuing processes. Ann. Math. Statistics 24, (1953). 355--360. MR0056232
- J.M. Harrison. The diffusion approximation for tandem queues in heavy traffic. Adv. in Appl. Probab. 10 (1978), no. 4, 886--905. MR0509222
- J.M. Harrison and J.J. Hasenbein. Reflected Brownian motion in the quadrant: tail behavior of the stationary distribution, preprint, 2008.
- J.M. Harrison and M.I. Reiman. On the distribution of multidimensional reflected Brownian motion. SIAM J. Appl. Math. 41 (1981), no. 2, 345--361. MR0628959
- J.M. Harrison and R.J. Williams. Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22 (1987), no. 2, 77--115. MR0912049
- J.M. Harrison and R.J. Williams. Multidimensional reflected Brownian motions having exponential stationary distributions. Ann. Probab. 15 (1987), no. 1, 115--137. MR0877593
- D.G. Hobson and L.C.G. Rogers. Recurrence and transience of reflecting Brownian motion in the quadrant. Math. Proc. Cambridge Philos. Soc. 113 (1993), no. 2, 387--399. MR1198420
- W. Kager. Reflected Brownian motion in generic triangles and wedges. Stochastic Process. Appl. 117 (2007), no. 5, 539--549. MR2320948
- J.-F. Le Gall. Mouvement brownien, cônes et processus stables. (French) [Brownian motion, cones and stable processes] Probab. Theory Related Fields 76 (1987), no. 4, 587--627. MR0917681
- M.H. Protter and H.F. Weinberger. Maximum principles in differential equations. Prentice-Hall, Inc., Englewood Cliffs, N.J. 1967. MR0219861
- S.R.S. Varadhan and R.J. Williams. Brownian motion in a wedge with oblique reflection. Comm. Pure Appl. Math. 38 (1985), no. 4, 405--443. MR0792398
- R.J. Williams. Recurrence classification and invariant measure for reflected Brownian motion in a wedge. Ann. Probab. 13 (1985), no. 3, 758--778. MR0799421
- R.J. Williams. Reflected Brownian motion in a wedge: semimartingale property. Z. Wahrsch. Verw. Gebiete 69 (1985), no. 2, 161--176. MR0779455
- R.J. Williams. Reflected Brownian motion with skew symmetric data in a polyhedral domain. Probab. Theory Related Fields 75 (1987), no. 4, 459--485. MR0894900

This work is licensed under a Creative Commons Attribution 3.0 License.