Characterization of distributions with the length-bias scaling property
Abstract
This paper characterizes the density functions of absolutely continuous positive random variables with finite expectation whose respective distribution functions satisfy the so-called length-bias scaling property.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 186-191
Publication Date: May 3, 2009
DOI: 10.1214/ECP.v14-1458
References
- J. Bertoin, P. Biane and M. Yor. Poissonian exponential functionals, q-series, q-integrals, and the moment problem for log-normal distributions. Seminar on Stochastic Analysis, Random Fields and Applications IV, 45-56. Progr. Probab., 58, Birkhauser, Basel, 2004. Math. Review 2005h:60143
- D. R. Cox. Renewal theory. Methuen & Co. Ltd., London. John Wiley & Sons, Inc., New York 1962. ix+142 pp. Math. Review 27 #3030
- T. S. Chihara. A characterization and a class of distributions functions for the Stieltjes-Wigert polynomials. Canadian Math. Bull. 13 (1970), 529-532. Math. Review 43 #6480
- R. Gomez, M. Lopez-Garcia. A family of heat functions as solutions of indeterminate moment problems. Int. J. Math. Math. Sci., vol. 2007, Article ID 41526, 11 pages, doi:10.1155/2007/41526. Math. Review 2008j:44003
- R. C. Gupta, S. N. U. A. Kirmani. The role of weighted distributions in stochastic modeling. Comm. Statist. Theory Methods 19 (1990), no. 9, 3147-3162. Math. Review 92e:62180
- V. Leyva, A. Sanhueza, J. M. Angulo. A length-biased version of the Birnbaum-Saunders distribution with application in water quality. Stoch. Environ Res Risk Asses (2009) 23, 299-307, doi:10.1007/s00477-008-0215-9.
- M. Lopez-Garcia. Characterization of solutions to the log-normal moment problem, to appear in Theory of Probability and its Applications.
- S. Y. Oncel, M. Ahsanullah, F. A. Aliev and F. Aygun. Switching record and order statistics via random contractions. Statist. Probab. Lett. 73 (2005), no. 3, 207-217. Math. Review 2006i:62051
- A. G. Pakes, R. Khattree. Length-biasing, characterization of laws, and the moment problem. Austral. J. Statist. 34 (1992), 307-322. Math. Review 94a:60018
- A. G. Pakes. Length biasing and laws equivalent to the log-normal. J. Math. Anal. Appl. 197 (1996), 825-854. Math. Review 97f:60034
- A. G. Pakes. Structure of Stieltjes classes of moment-equivalent probability laws. J. Math. Anal. Appl. 326 (2007), 1268-1290. Math. Review 2008e:60034
- A. G. Pakes, J. Navarro. Distributional characterizations through scaling relations. Aust. N. Z. J. Stat. 49 (2007), no. 2, 115-135. Math. Review 2009a:62054
- C. R. Rao, D. N. Shanbhag. Choquet-Deny type functional equations with applications to stochastic models. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester (1994). xii+290 pp. Math. Review 97d:60020
- Y. Vardi, L. A. Shepp, B. F. Logan. Distribution functions invariant under residual-lifetime and length-biased sampling, Wahrscheinlichkeitstheorie verw. Gebiete 56 (1981), 415-426. Electronic Communications in Probability. Math. Review 83c:62167
- D. V. Widder. The Heat Equation. Pure and Applied Mathematics, Vol. 67. Academic Press, New York-London (1975). xiv+267 pp. Math. Review 57 #6840

This work is licensed under a Creative Commons Attribution 3.0 License.