An Almost Sure Limit Theorem For the Maxima of Strongly Dependent Gaussian Sequences
Abstract
In this paper, we prove an almost sure limit theorem for the maxima of strongly dependent Gaussian sequences under some mild conditions. The result is an expansion of the weakly dependent result of E. Csaki and K. Gonchigdanzan.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 224-231
Publication Date: May 24, 2009
DOI: 10.1214/ECP.v14-1461
References
- Berkes, István; Csáki, Endre. A universal result in almost sure central limit theory. Stochastic Process. Appl. 94 (2001), no. 1, 105--134. MR1835848 (2002j:60033)
- Csáki, Endre; Gonchigdanzan, Khurelbaatar. Almost sure limit theorems for the maximum of stationary Gaussian sequences. Statist. Probab. Lett. 58 (2002), no. 2, 195--203. MR1914918 (2003j:60036)
- Chen, Shouquan; Lin, Zhengyan. Almost sure max-limits for nonstationary Gaussian sequence. Statist. Probab. Lett. 76 (2006), no. 11, 1175--1184. MR2269290 (2008e:60068)
- Cheng, Shihong; Peng, Liang; Qi, Yongcheng. Almost sure convergence in extreme value theory. Math. Nachr. 190 (1998), 43--50. MR1611675 (99g:60063)
- Fahrner, I.; Stadtm¸ller, U. On almost sure max-limit theorems. Statist. Probab. Lett. 37 (1998), no. 3, 229--236. MR1614934
- Leadbetter, M. R.; Lindgren, Georg; Rootzén, Holger. Extremes and related properties of random sequences and processes.Springer Series in Statistics. Springer-Verlag, New York-Berlin, 1983. xii+336 pp. ISBN: 0-387-90731-9 MR0691492 (84h:60050)

This work is licensed under a Creative Commons Attribution 3.0 License.