On the re-rooting invariance property of Lévy trees
Jean-Francois Le Gall (Université Paris-Sud)
Abstract
We prove a strong form of the invariance under re-rooting of the distribution of the continuous random trees called Lévy trees. This expends previous results due to several authors.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 317-326
Publication Date: August 12, 2009
DOI: 10.1214/ECP.v14-1484
References
- R. Abraham, J.F. Delmas, Williams' decomposition of the Levy continuous random tree and simultaneous extinction probability for populations with neutral mutations. Stoch. Process. Appl. 119 (2009), 1124-1143. MR2508567
- D. Aldous, The continuum random tree. I, Ann. Probab. 19 (1991), 1--28. MR1085326
- D. Aldous, The continuum random tree. II. An overview, in: Stochastic analysis (Durham, 1990), 23--70, Cambridge Univ. Press, Cambridge. MR1166406
- D. Aldous, The continuum random tree. III, Ann. Probab. 21 (1993), 248--289. MR1207226
- D. Aldous, Tree-based models for random distribution of mass, J. Statist. Phys. 73 (1993), 625--641. MR1251658
- J. Bertoin, Levy Processes. Cambridge University Press, Cambridge, 1996. MR1406564
- B. Chen, D. Ford, M. Winkel, A new family of Markov branching trees: the alpha-gamma model. Electr. J. Probab. 14 (2009), 400-430. MR2480547
- T. Duquesne, A limit theorem for the contour process of conditioned Galton-Watson trees. Ann. Probab. 31 (2003), 996-1027. MR1964956
- T. Duquesne, J.F. Le Gall, Random Trees, Levy Processes and Spatial Branching Processes. Asterisque 281 (2002) MR1954248
- T. Duquesne, J.F. Le Gall, Probabilistic and fractal aspects of Levy trees. Probab. Th. Rel. Fields 131 (2005), 553-603. MR2147221
- S.N. Evans, J.W. Pitman, A. Winter, Rayleigh processes, real trees and root growth with re-grafting. Probab. Th. Rel. Fields 134 (2006), 81-126. MR2221786
- M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics. Birkh"auser, Boston, 1999. MR1699320
- B. Haas, G. Miermont, The genealogy of self-similar fragmentations with negative index as a continuum random tree. Electr. J. Probab. 9 (2004), 57-97. MR2041849
- B. Haas, G. Miermont, J.W. Pitman, M. Winkel, Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models. Ann. Probab. 36 (2008), 1790-1837. MR2440924
- B. Haas, J.W. Pitman, M. Winkel, Spinal partitions and invariance under re-rooting of continuum random trees. Ann. Probab., to appear.
- J.F. Le Gall, The topological structure of scaling limits of large planar maps. Invent. Math. 169 (2007), 621-670. MR2336042
- J.F. Le Gall, Y. Le Jan, Branching processes in Levy processes: The exploration process. Ann. Probab. 26 (1998), 213-252. MR1617047
- J.F. Le Gall, M. Weill, Conditioned Brownian trees. Ann. Inst. H. Poincare, Probab. Stat. 42 (2006), 455-489. MR2242956
- P. Marchal, A note on the fragmentation of the stable tree. In: Fifth Colloquium on Mathematics and Computer Science. DMCTS Proceedings AI (2008), 489-500.
- J.F. Marckert, A. Mokkadem, A., Limit of normalized quadrangulations: the Brownian map. Ann. Probab. 34 (2006), 2144--2202. MR2294979
- J. Pitman, Combinatorial Stochastic Processes. Lectures Notes Math. 1875. Springer, Berlin, 2006. MR2245368
- M. Weill, Regenerative real trees. Ann. Probab. 35 (2007), 2091-2121. MR2353384

This work is licensed under a Creative Commons Attribution 3.0 License.