Exponential inequalities for self-normalized processes with applications
Guodong Pang (Columbia University)
Abstract
We prove the following exponential inequality for a pair of random variables $(A,B)$ with $B >0$ satisfying the canonical assumption, $E[\exp(\lambda A - \frac{\lambda^2}{2} B^2)]\leq 1$ for $\lambda \in R$, $$P\left( \frac{|A|}{\sqrt{ \frac{2q-1}{q} \left(B^2+ (E[|A|^p])^{2/p} \right) }} \geq x \right) \leq \left(\frac{q}{2q-1} \right)^{\frac{q}{2q-1}} x^{-\frac{q}{2q-1}} e^{-x^2/2} $$ for $x>0$, where $1/p+ 1/q =1$ and $p\geq1$. Applying this inequality, we obtain exponential bounds for the tail probabilities for self-normalized martingale difference sequences. We propose a method of hypothesis testing for the $L^p$-norm $(p \geq 1)$ of $A$ (in particular, martingales) and some stopping times. We apply this inequality to the stochastic TSP in $[0,1]^d$ ($d\geq 2$), connected to the CLT.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 372-381
Publication Date: September 8, 2009
DOI: 10.1214/ECP.v14-1490
References
-
B. Bercu and A. Touati.
Exponential inequalities for self-normalized martingales with applications.
Ann. Appl. Probab. (2008), 18, 1848--1869.
MR2462551
- N.J. Cerf, J. Boutet de Monvel, O. Bohigas, O.C. Martin and A.G. Percus. The random link approximation for the Euclidean Traveling Salesman Problem. Journal de Physique I. (1997), 7, 117--136.
- V.H. de la Pe\~{n}a. A general class of exponential inequalities for martingales and ratios. Ann. Probab. (1999), 27, 537--564. MR1681153 (2000c:60020)
- V.H. de la Pe\~{n}a, M.J. Klass and T.L. Lai. Self-normalized processes: exponential inequalities, moment bounds and iterated logarithm laws. Ann. Probab.. (2004), Vol. 32, No.3A, 1902--1933. MR2073181 (2005g:60035)
- V.H. de la Pe\~{n}a, M.J. Klass and T.L. Lai. Pseudo-maximization and self-normalized processes. Probability Surveys . (2007), Vol. 4,172--192. MR2368950 (2009b:60061)
- V.H. de la Pe\~{n}a, T.L. Lai and Q.M. Shao. Self-Normalized Processes: Limit Theory and Statistical Applications. Springer. (2009). MR2488094
- V. Egorov. On the Growth Rate of Moments of Random Sums. {\em Preprint. } (1998).
- E. Gin{\'e}, F. G{\"o}tze and D. Mason. When is the Student $t$-statistic asymptotically standard normal? Ann. Probab. (1997), 25, 1514--1531. MR1457629 (98j:60033)
- B. Efron. Student's $t$-test under symmetry conditions. J. Amer. Statist. Assoc. (1969), 64, 1278--1302. MR1121940 (92h:60127)
- B.F. Logan, C.L. Mallows, S.O. Rice and L.A. Shepp. Limit Distributions of Self-Normalized Sums. Ann. Probab. (1973), 1, 788--809. MR0362449 (50 #14890)
- W.T. Rhee and M. Talagrand. Martingale inequalities and NP-complete problems. Mathematics of Operations Research. (1987), 12, 177--181. MR0882849 (88j:68071)
- W.T. Rhee and M. Talagrand. Martingale inequalities, interpolation and NP-complete problems. Mathematics of Operations Research. (1989a), 13, 91--96. MR0984560 (89m:60104)
- W.T. Rhee and M. Talagrand. A sharp deviation inequality for the stochastic Traveling Salesman Problem. Ann. Probab. (1989b), 17, 1--8. MR0972767 (89m:60065)
- J.M. Steele. Complete convergence of short paths and Karp's algorithm for the TSP. Mathematics of Operations Research. (1981), 6, 374--378. MR0629637 (82i:90040)
- J.M. Steele. Probability Theory and Combinatorial Optimization. CBMS-NSF regional conference series in applied mathematics. (1997). MR1422018 (99d:60002)
- N.J. Cerf, J. Boutet de Monvel, O. Bohigas, O.C. Martin and A.G. Percus. The random link approximation for the Euclidean Traveling Salesman Problem. Journal de Physique I. (1997), 7, 117--136.

This work is licensed under a Creative Commons Attribution 3.0 License.