Harnack Inequality for Functional SDEs with Bounded Memory
Max-K. von Renesse (TU (Berlin))
Michael Scheutzow (TU (Berlin))
Abstract
We use a coupling method for functional stochastic differential equations with bounded memory to establish an analogue of Wang's dimension-free Harnack inequality [13]. The strong Feller property for the corresponding segment process is also obtained.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 560-565
Publication Date: December 13, 2009
DOI: 10.1214/ECP.v14-1513
References
- Arnaudon, Marc; Thalmaier, Anton; Wang, Feng-Yu. Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bull. Sci. Math. 130 (2006), no. 3, 223--233. MR2215664 (2007i:58032)
- Da Prato, Giuseppe; Röckner, Michael; Wang, Feng-Yu. Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups. J. Funct. Anal. 257 (2009), no. 4, 992--1017. MR2535460
- Da Prato, G.; Zabczyk, J. Ergodicity for infinite-dimensional systems.London Mathematical Society Lecture Note Series, 229. Cambridge University Press, Cambridge, 1996. xii+339 pp. ISBN: 0-521-57900-7 MR1417491 (97k:60165)
- A. Es--Sarhir, O. van Gaans and M.Scheutzow, Invariant measures for stochastic delay equations with superlinear drift term, Diff. Int. Eqs 23 (1-2) (2010), 189--200.
- M. Hairer, J. C. Mattingly, and M. Scheutzow, Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations, Prob. Theory Rel. Fields, DOI 10.1007/s00440-009-0250-6.
- Kassmann, Moritz. Harnack inequalities: an introduction. Bound. Value Probl. 2007, Art. ID 81415, 21 pp. MR2291922 (2007j:35001)
- Krylov, N. V. A simple proof of the existence of a solution to the Itô equation with monotone coefficients.(Russian) Teor. Veroyatnost. i Primenen. 35 (1990), no. 3, 576--580; translation in Theory Probab. Appl. 35 (1990), no. 3, 583--587 (1991) MR1091217 (92m:60047)
- Lifshits, M. A. Gaussian random functions.Mathematics and its Applications, 322. Kluwer Academic Publishers, Dordrecht, 1995. xii+333 pp. ISBN: 0-7923-3385-3 MR1472736 (98k:60059)
- W. Liu, Harnack inequality and applications for stochastic evolution equations with monotone drifts, J. Evol. Equ. 9 (2009), 747–-770.
- M.-K. von Renesse and M. Scheutzow, Existence and uniqueness of solutions of stochastic functional differential equations, Random Oper. Stoch. Equ, to appear.
- Scheutzow, Michael. Exponential growth rates for stochastic delay differential equations. Stoch. Dyn. 5 (2005), no. 2, 163--174. MR2147280 (2006b:60130)
- Scheutzow, M. Qualitative behaviour of stochastic delay equations with a bounded memory. Stochastics 12 (1984), no. 1, 41--80. MR0738934 (85h:60087)
- Wang, Feng-Yu. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Probab. Theory Related Fields 109 (1997), no. 3, 417--424. MR1481127 (98i:58253)
- Wang, Feng-Yu. Harnack inequality and applications for stochastic generalized porous media equations. Ann. Probab. 35 (2007), no. 4, 1333--1350. MR2330974 (2008e:60192)

This work is licensed under a Creative Commons Attribution 3.0 License.