Lipschitz percolation
Patrick W. Dondl (University of Bonn)
Geoffrey R. Grimmett (Cambridge University)
Alexander E. Holroyd (Microsoft Research; University of British Columbia)
Michael Scheutzow (Technical University, Berlin)
Abstract
We prove the existence of a (random) Lipschitz function $F:\mathbb{Z}^{d-1}\to\mathbb{Z}^+$ such that, for every $x\in\mathbb{Z}^{d-1}$, the site $(x,F(x))$ is open in a site percolation process on $\mathbb{Z}^{d}$. The Lipschitz constant may be taken to be $1$ when the parameter $p$ of the percolation model is sufficiently close to $1$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 14-21
Publication Date: January 21, 2010
DOI: 10.1214/ECP.v15-1521
References
- Aizenman, M., Chayes, J. T., Chayes, L., Fröhlich, J., Russo, L. On a sharp transition from area law to perimeter law in a system of random surfaces. Comm. Math. Phys. 92 (1983), 19--69. MR0728447 (85d:82006)
- Atapour, M., Madras, N. On the number of entangled clusters, J. Statist. Phys. (2010), to appear.
- Dirr, N., Dondl, P. W., Scheutzow, M. Pinning of interfaces in random media, (2009), arXiv:0911.4254.
- Gielis, G., Grimmett, G. R. Rigidity of the interface in percolation and random-cluster models. J. Statist. Phys. 109 (2002), 1--37. MR1927913 (2003h:82037)
- Grimmett, G. R.. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften, 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339 (2001a:60114)
- Grimmett, G. R. Three problems for the clairvoyant demon, Probability and Mathematical Genetics (N. H. Bingham and C. M. Goldie, eds.), Cambridge University Press, Cambridge, 2010, pp. 379--395.
- Grimmett, G. R., Holroyd, A. E. Entanglement in percolation. Proc. London Math. Soc. 81 (2000), 485--512. MR1770617 (2001j:60185)
- Grimmett, G. R., Holroyd, A. E. Lattice embeddings in percolation, (2010), in preparation.
- Grimmett, G. R., Holroyd, A. E. Plaquettes, spheres, and entanglement, (2010), in preparation.
- Holroyd, A. E. Existence of a phase transition for entanglement percolation. Math. Proc. Cambridge Philos. Soc. 129 (2000), 231--251. MR1765912 (2001k:82051)

This work is licensed under a Creative Commons Attribution 3.0 License.