Consistent Minimal Displacement of Branching Random Walks
Ofer Zeitouni (University of Minnesota and Weizmann Institute)
Abstract
Let $\mathbb{T}$ denote a rooted $b$-ary tree and let $\{S_v\}_{v\in \mathbb{T}}$ denote a branching random walk indexed by the vertices of the tree, where the increments are i.i.d. and possess a logarithmic moment generating function $\Lambda(\cdot)$. Let $m_n$ denote the minimum of the variables $S_v$ over all vertices at the $n$th generation, denoted by $\mathbb{D}_n$. Under mild conditions, $m_n/n$ converges almost surely to a constant, which for convenience may be taken to be $0$. With $\bar S_v=\max\{S_w: w$ is on the geodesic connecting the root to $v \}$, define $L_n=\min_{v\in \mathbb{D}_n} \bar S_v$. We prove that $L_n/n^{1/3}$ converges almost surely to an explicit constant $l_0$. This answers a question of Hu and Shi.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 106-118
Publication Date: March 29, 2010
DOI: 10.1214/ECP.v15-1533
References
- Addario-Berry, Louigi; Reed, Bruce. Minima in branching random walks. Ann. Probab. 37 (2009), no. 3, 1044--1079. MR2537549
- Bramson, Maury D. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 (1978), no. 5, 531--581. MR0494541 (58 #13382)
- Bramson, Maury D. Minimal displacement of branching random walk. Z. Wahrsch. Verw. Gebiete 45 (1978), no. 2, 89--108. MR0510529 (80d:60105)
- Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications.Second edition.Applications of Mathematics (New York), 38. Springer-Verlag, New York, 1998. xvi+396 pp. ISBN: 0-387-98406-2 MR1619036 (99d:60030)
- Hu, Yueyun; Shi, Zhan. Slow movement of random walk in random environment on a regular tree. Ann. Probab. 35 (2007), no. 5, 1978--1997. MR2349581 (2009d:60340)
- G. Faraud, Y. Hu and Z. Shi, An almost sure convergence for stochastically biased random walks on trees, personal communication (2009).
- Mogulʹskiĭ, A. A. Small deviations in the space of trajectories.(Russian) Teor. Verojatnost. i Primenen. 19 (1974), 755--765. MR0370701 (51 #6927)

This work is licensed under a Creative Commons Attribution 3.0 License.