Cramér theorem for Gamma random variables
Ciprian A. Tudor (Université Lille 1)
Abstract
In this paper we discuss the following problem: given a random variable $Z=X+Y$ with Gamma law such that $X$ and $Y$ are independent, we want to understand if then $X$ and $Y$ each follow a Gamma law. This is related to Cramer's theorem which states that if $X$ and $Y$ are independent then $Z=X+Y$ follows a Gaussian law if and only if $X$ and $Y$ follow a Gaussian law. We prove that Cramer's theorem is true in the Gamma context for random variables living in a Wiener chaos of fixed order but the result is not true in general. We also give an asymptotic variant of our result.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 365-378
Publication Date: July 7, 2011
DOI: 10.1214/ECP.v16-1639
References
- H. Cramér. Uber eine Eigenschaft der normalen Verteilungsfunction. Math. Z. 41(2) (1936), 405-414. MR1545629
- Y. Hu and D. Nualart. Some processes associated with fractional Bessel processes. Journal of Theoretical Probability 18(2) (2005), 377-397. MR2137449
- P. Malliavin. Stochastic Analysis. Springer-Verlag, Berlin (1997). MR1450093
- D. Nualart. Malliavin Calculus and Related Topics. Springer-Verlag, Berlin (2006). MR2200233
- I. Nourdin and G. Peccati. Noncentral convergence of multiple integrals. The Annals of Probability 37(4) (2009), 1412-1426. MR2546749
- I. Nourdin and G. Peccati. Stein's method on Wiener chaos. Probability Theory and Related Fields 145(1-2) (2007), 75-118. MR2520122
- C.A. Tudor. Asymptotic Cramér's theorem and analysis on Wiener space. To appear in Séminaire de Probabilités (2008). MR number not available.
- A.S. Ustunel and M. Zakai On independence and conditioning on Wiener space. The Annals of Probability 17(4) (1989), 1441-1453. MR1048936

This work is licensed under a Creative Commons Attribution 3.0 License.