Invariant measures of stochastic $2D$ Navier-Stokes equation driven by $\alpha$-stable processes
Lihu Xu (Department of Mathematics, Brunel University, Uxbridge UB8 3PH, ENGLAND)
Xicheng Zhang (Wuhan University)
Abstract
In this note we prove the well-posedness for stochastic $2D$ Navier-Stokes equation driven by general Lévy processes (in particular, $\alpha$-stable processes), and obtain the existence of invariant measures.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 678-688
Publication Date: October 31, 2011
DOI: 10.1214/ECP.v16-1664
References
- Aldous, David. Stopping times and tightness. II. Ann. Probab. 17 (1989), no. 2, 586--595. MR0985380 (90f:60002)
- Applebaum, David. Lévy processes and stochastic calculus.Cambridge Studies in Advanced Mathematics, 93. Cambridge University Press, Cambridge, 2004. xxiv+384 pp. ISBN: 0-521-83263-2 MR2072890 (2005h:60003)
- Da Prato, Giuseppe; Debussche, Arnaud. Ergodicity for the 3D stochastic Navier-Stokes equations. J. Math. Pures Appl. (9) 82 (2003), no. 8, 877--947. MR2005200 (2004m:60133)
- Da Prato, Giuseppe; Zabczyk, Jerzy. Stochastic equations in infinite dimensions.Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. xviii+454 pp. ISBN: 0-521-38529-6 MR1207136 (95g:60073)
- Debussche, Arnaud; Odasso, Cyril. Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise. J. Evol. Equ. 6 (2006), no. 2, 305--324. MR2227699 (2007f:35214)
- Dong, Zhao; Zhai, Jianliang. Martingale solutions and Markov selection of stochastic 3D Navier-Stokes equations with jump. J. Differential Equations 250 (2011), no. 6, 2737--2778. MR2771265
- Ethier Stewart. N and Kurtz Thomas G. Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley Sons Inc., New York, 1986, Characterization and convergence.
- Flandoli, Franco; Romito, Marco. Markov selections and their regularity for the three-dimensional stochastic Navier-Stokes equations. C. R. Math. Acad. Sci. Paris 343 (2006), no. 1, 47--50. MR2241958 (2007m:60177)
- Hairer, Martin; Mattingly, Jonathan C. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164 (2006), no. 3, 993--1032. MR2259251 (2008a:37095)
- Jakubowski, Adam. On the Skorokhod topology. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986), no. 3, 263--285. MR0871083 (89a:60008)
- Peszat, S.; Zabczyk, J. Stochastic partial differential equations with Lévy noise.An evolution equation approach.Encyclopedia of Mathematics and its Applications, 113. Cambridge University Press, Cambridge, 2007. xii+419 pp. ISBN: 978-0-521-87989-7 MR2356959 (2009b:60200)
- Sato, Ken-iti. Lévy processes and infinitely divisible distributions.Translated from the 1990 Japanese original.Revised by the author.Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999. xii+486 pp. ISBN: 0-521-55302-4 MR1739520 (2003b:60064)

This work is licensed under a Creative Commons Attribution 3.0 License.