Correlation Inequalities for Edge-Reinforced Random Walk
Silke W.W. Rolles (Technische Universität München)
Abstract
We prove correlation inequalities for linearly edge-reinforced random walk. These correlation inequalities concern the first entry tree, i.e. the tree of edges used to enter any vertex for the first time. They also involve the asymptotic fraction of time spent on particular edges. Basic ingredients are known FKG-type inequalities and known negative associations for determinantal processes.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 753-763
Publication Date: November 23, 2011
DOI: 10.1214/ECP.v16-1683
References
- W.Th.F. den Hollander, M. Keane. Inequalities of FKG type. Phys. A 138 (1986), no. 1-2, 167--182. MR0865241 (88f:82003)
- M.S. Keane, S.W.W. Rolles. Edge-reinforced random walk on finite graphs. Infinite dimensional stochastic analysis (Amsterdam, 1999), 217--234, Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., 52, R. Neth. Acad. Arts Sci., Amsterdam, 2000. MR1832379 (2002b:60078)
- R. Lyons. Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. No. 98 (2003), 167--212. MR2031202 (2005b:60024)
- F. Merkl, S.W.W. Rolles. Bounding a random environment for two-dimensional edge-reinforced random walk. Electron. J. Probab. 13 (2008), no. 19, 530--565. MR2399290 (2009d:60342)
- C.J. Preston. A generalization of the FKG inequalities. Comm. Math. Phys. 36 (1974), 233--241. MR0341553 (49 #6301)

This work is licensed under a Creative Commons Attribution 3.0 License.