Simulation of a stochastic process in a discontinuous layered medium
Abstract
In this note, we provide a simulation algorithm for a diffusion process in a layered media. Our main tools are the properties of the Skew Brownian motion and a path decomposition technique for simulating occupation times.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 764-774
Publication Date: November 30, 2011
DOI: 10.1214/ECP.v16-1686
References
- T.A. Appuhamillage, V.A. Bokil, E. Thomann, E. Waymire and B. D. Wood, Occupation and local times for Skew Brownian motion with application to dispersion accross an interface. Ann. Appl. Probab. 21:1 (2011), 183214. Math. review MR2759199
- M. Barlow, J. Pitman and M. Yor, Une extension multidimensionnelle de la loi de l'arc sinus. In Séminaire de Probabilités, XXIII, Lecture Notes in Math. 1372, Springer (1989), 294314. Math. review MR1022918
- A Beskos and G.O. Roberts, Exact simulation of diffusion. Ann. Appl. Probab. 15:4 (2005), 24222444. Math. review MR2187299
- A. N. Borodin and P. Salminen, Handbook of Brownian motion-facts and formulae. Probability and its Applications, Birkhäuser Verlag (2002). Math. review MR1912205
- M. Bossy, N. Champagnat, S. Maire and D. Talay, Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in Molecular Dynamics. ESAIM M2AN 44:5 (2010), 9971048. Math. review MR2731401
- L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag (1986). Math. review MR0836973
- P. Étoré, On random walk simulation of one-dimensional diffusion processes with discontinuous coefficients. Electron. J. Probab. 11:9 (2006), 249275. Math. review MR2217816
- P. Étoré and A. Lejay, A Donsker theorem to simulate one-dimensional processes with measurable coefficients. ESAIM Probab. Stat. 11 (2007), 301326. Math. review MR2339295
- P. Étoré and M. Martinez, Exact simulation of one-dimensional stochastic differential equations involving the local time at zero of the unknown process. Preprint (2011). Math Review number not available.
- E. Gobet, Weak approximation of killed diffusion using Euler schemes. Stochastic Process. Appl. 87:2 (2000), 167197. Math. review MR1757112
- J. M. Harrison and L. A. Shepp, On skew Brownian motion. Ann. Probab. 9:2 (1981), 309313. Math. review MR606993
- E. Hausenblas, A numerical scheme using Itô excursions for simulating local time resp. stochastic differential equations with reflection. Osaka J. Math. 36:1 (1999), 105137. Math. review MR1670754
- H. Hoteit, R. Mose, A. Younes, F. Lehmann and Ph. Ackerer, Three-dimensional modeling of mass transfer in porous media using the mixed hybrid finite elements and the random-walk methods. Math. Geology 34:4 (2002), 435456. Math Review number not available.
- K. Itô and Jr. McKean, H. P., Diffusion processes and their sample paths, Springer-Verlag (1974). Math. review MR0345224
- E.~M. LaBolle, J. Quastel, G.~E. Fogg and J. Gravner, Diffusion processes in composite porous media and their numerical integration by random walks: Generalized stochastic differential equations with discontinuous coefficients. Water Resour. Res. 36 (2000), 651662. Math Review number not available.
- J. Lamperti, An occupation time theorem for a class of stochastic processes. Trans. Amer. Math. Soc. 88 (1958), 380387. Math. review MR0094863
- J.-F. Le Gall, One-Dimensional Stochastic Differential Equations Involving the Local Times of the Unknown Process. In Stochastic Analysis and Applications, Lecture Notes in Math. 1095, Springer (1985), 5182. Math. review MR777514
- A. Lejay, On the decomposition of excursions measures of processes whose generators have diffusion coefficients discontinuous at one point. Markov Process. Related Fields 8:1 (2002), 117126. Math. review MR1897608
- A. Lejay, BSDE driven by Dirichlet Process and Semi-linear Parabolic PDE. Application to Homogenization. Stochastic Proces. Appl. 97:1 (2002), 139. Math. review MR1870718
- A. Lejay, On the constructions of the Skew Brownian motion. Probab. Surv. 3 (2006), 413466. Math. review MR2280299
- A. Lejay and S. Maire, A method to assess the quality of Monte Carlo methods for multi-dimensional stochastic processes in discontinuous media. In preparation (2011). Math Review number not available.
- A. Lejay and M. Martinez, A scheme for simulating one-dimensional diffusion processes with discontinuous coefficients. Ann. Appl. Probab. 16:1 (2006), 107139. Math. review MR2209338
- A. Lejay and G. Pichot, Simulating diffusion processes in discontinuous media: a numerical scheme with constant time steps. (2011). Preprint. Math Review number not available.
- H. R. Lerche and D. Siegmund, Approximate exit probabilities for a Brownian bridge on a short time interval, and applications. Adv. in Appl. Probab. 21:1 (1989), 119. Math. review MR980734
- P. Lévy, Sur certains processus stochastiques homogènes. Compositio Math. 7 (1939), 283339. Math. review MR0000919
- M. Martinez, Interprétations probabilistes d'opérateurs sous forme divergence et analyse de méthodes numériques associées, Ph.D. thesis, Université de Provence / INRIA Sophia-Antipolis (2004). Math Review number not available.
- M. Martinez and D. Talay, Discrétisation d'équations différentielles stochastiques unidimensionnelles à générateur sous forme divergence avec coefficient discontinu. C. R. Math. Acad. Sci. Paris 342:1 (2006), 5156. Math. review MR2524981
- M. Martinez and D. Talay, One-Dimensional Parabolic Diffraction Equations: Pointwise Estimates and Discretization of Related Stochastic Differential Equations with Weighted Local Times. Preprint (2011). Math Review number not available.
- J.R. Michael, W.R. Shucany and R.W. Haas, Generating random variates using transformations with multiple roots. American Statistician 30:2 (1976), 8890. Math Review number not available.
- Y. Ouknine, Le ``Skew-Brownian motion'' et les processus qui en dérivent. Teor. Veroyatnost. i Primenen. 35:1 (1990), 173179. Math. review MR1050069
- O. Ovaskainen and S. J. Cornell, Biased movement at a boundary and conditional occupancy times for diffusion processes. J. Appl. Probab. 40:3 (2003), 557580. Math. review MR1993253
- J. Pitman and M. Yor, Arcsine laws and interval partitions derived from a stable subordinator. Proc. London Math. Soc. (3) 65:2 (1992), 326356. Math. review MR2126891
- J. Pitman and M. Yor, On the relative lengths of excursions derived from a stable subordinator. In Séminaire de Probabilités, XXXI, Lecture Notes in Math. 1655, Springer (1997), 287305. Math. review MR1478738
- J.M. Ramirez, Multi-skewed Brownian motion and diffusion in layered media. Proc. Amer. Math. Soc. 139:10 (2011), 37393752. Math. review MR2813404
- J. M. Ramirez, E. A. Thomann, E. C. Waymire, R. Haggerty and B. Wood, A generalized Taylor-Aris formula and skew diffusion. Multiscale Model. Simul. 5:3 (2006), 786801. Math. review MR2257235
- A. Rozkosz, Weak Convergence of Diffusions Corresponding to Divergence Form Operator. Stochastics Stochastics Rep. 57 (1996), 129157. Math. review MR1407951
- P. Salamon, D. Fernàndez-Garcia and J. J. Gómez-Hernández, A review and numerical assessment of the random walk particle tracking method. J. Contaminant Hydrology 87:3-4 (2006), 277305. Math Review number not available.
- P. Salminen, P. Vallois and M. Yor, On the excursion theory for linear diffusions. Jpn. J. Math. 2:1 (2007), 97127. Math. review MR2295612
- D. W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence form operators. In Séminaire de Probabilités, XXII, Lecture Notes in Math. 1321, Springer (1988), 316347. Math. review MR0960535
- G.J.M. Uffink, A random walk method for the simulation of macrodispersion in a stratified aquifer. Relation of Groundwater Quantity and Quality, IAHS Publication, IAHS Publication (eds), IAHS Press, Walingford, UK (1985), 103114. Math Review number not available.
- S. Watanabe, Generalized arc-sine laws for one-dimensional diffusion processes and random walks. In Stochastic analysis, Proc. Sympos. Pure Math. 57, Amer. Math. Soc. (1995), 157172. Math. review MR1335470
- S. Watanabe, K. Yano and Y. Yano, A density formula for the law of time spent on the positive side of one-dimensional diffusion processes. J. Math. Kyoto Univ. 45:4 (2005), 781806. Math. review MR2226630
- Y. Yano, On the occupation time on the half line of pinned diffusion processes. Publ. Res. Inst. Math. Sci. 42:3 (2006), 787802. Math. review MR2266997
- M. Yor, Local Times and Excursions for Brownian motion: a concise introduction. Lecciones en Matem&macute;ticas, Universidad Central de Venezuela (1995). Math Review number not available.
- M. Zhang, Calculation of diffusive shock acceleration of charged particles by skew Brownian motion. The Astrophysical Journal 541 (2000), 428435. Math Review number not available.

This work is licensed under a Creative Commons Attribution 3.0 License.