The Liouville and the intersection properties are equivalent for planar graphs
Nicolas Curien (ÉNS Paris)
Agelos Georgakopoulos (Weizmann Institute Rehovot)
Abstract
It is shown that if a planar graph admits no non-constant bounded harmonic function then the trajectories of two independent simple random walks intersect almost surely.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-5
Publication Date: September 26, 2012
DOI: 10.1214/ECP.v17-1913
References
- Angel, Omer; Schramm, Oded. Uniform infinite planar triangulations. Comm. Math. Phys. 241 (2003), no. 2-3, 191--213. MR2013797
- I. Benjamini and N. Curien. Ergodic theory on stationary random graphs. arXiv:1011.2526.
- Benjamini, Itai; Schramm, Oded. Harmonic functions on planar and almost planar graphs and manifolds, via circle packings. Invent. Math. 126 (1996), no. 3, 565--587. MR1419007
- I. Benjamini and O. Schramm. Lack of sphere packing of graphs via non-linear potential theory, arXiv:0910.3071
- Georgakopoulos, Agelos. Lamplighter graphs do not admit harmonic functions of finite energy. Proc. Amer. Math. Soc. 138 (2010), no. 9, 3057--3061. MR2653930
- O. Gurel-Gurevich and A. Nachmias. Recurrence of planar graph limits. Annals Math. (to appear).
- M. Krikun. Local structure of random quadrangulations. arXiv:0512304.
- Richter, R. Bruce; Thomassen, Carsten. 3-connected planar spaces uniquely embed in the sphere. Trans. Amer. Math. Soc. 354 (2002), no. 11, 4585--4595 (electronic). MR1926890
- Soardi, Paolo M. Potential theory on infinite networks. Lecture Notes in Mathematics, 1590. Springer-Verlag, Berlin, 1994. viii+187 pp. ISBN: 3-540-58448-X MR1324344
- Thomas, Robin. Recent excluded minor theorems for graphs. Surveys in combinatorics, 1999 (Canterbury), 201--222, London Math. Soc. Lecture Note Ser., 267, Cambridge Univ. Press, Cambridge, 1999. MR1725004

This work is licensed under a Creative Commons Attribution 3.0 License.