On a concentration inequality for sums of independent isotropic vectors
Stanislav Alekseevich Molchanov (University of North Carolina at Charlotte)
Abstract
We consider a version of a classical concentration inequality for sums of independent, isotropic random vectors with a mild restriction on the distribution of the radial part of these vectors. The proof uses a little Fourier analysis, the Laplace asymptotic method and a conditioning idea that traces its roots to some of the original works on concentration inequalities.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-8
Publication Date: July 14, 2012
DOI: 10.1214/ECP.v17-2063
References
- Araujo, Aloisio; Giné, Evarist. The central limit theorem for real and Banach valued random variables. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York-Chichester-Brisbane, 1980. xiv+233 pp. ISBN: 0-471-05304-X MR0576407
- Barakat, Richard. Isotropic random flights. J. Phys. A 6 (1973), 796--804. MR0418184
- Richard Barakat. Lèvy flights and superdiffusion in the context of biological encounters and random searches Physics of Life Reviews, Vol. 5, 133-150, 2008.
- Chandresekhar, S. Stochastic problems in physics and astronomy. Rev. Modern Phys. 15, (1943). 1--89. MR0008130
- W. Döblin. Sur la summe d'un grande nombres des variables aleatoires independantes. Bull. Sc. Math, 63, pp 23-32, 35-64, 1939.
- M. Doi and S.F. Edwards. The Theory of Polymer Dynamics. International Monographs on Physics 1988.
- Durrett, Richard. Probability: theory and examples. Second edition. Duxbury Press, Belmont, CA, 1996. xiii+503 pp. ISBN: 0-534-24318-5 MR1609153
- P. J. Flory Statistical Mechanics of Chain Molecules. New York: Interscience, 1969.
- Hoeffding, Wassily. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 1963 13--30. MR0144363
- Kanter, Marek. Probability inequalities for convex sets and multidimensional concentration functions. J. Multivariate Anal. 6 (1976), no. 2, 222--236. MR0478328
- A.N. Kolmogorov. Sur les proprietes des fonctions concentrations de M. P, Lèvy. Ann. de l'Inst. Henri Poincarè, XVI, 1,pp.27-34, 1958.
- Lebedev, N. N. Special functions and their applications. Revised English edition. Translated and edited by Richard A. Silverman Prentice-Hall, Inc., Englewood Cliffs, N.J. 1965 xii+308 pp. MR0174795
- Ledoux, Michel. The concentration of measure phenomenon. Mathematical Surveys and Monographs, 89. American Mathematical Society, Providence, RI, 2001. x+181 pp. ISBN: 0-8218-2864-9 MR1849347
- Paul Lèvy. Theorie de l'Addition des Variables Aleatoires. Gauthier-Villars, Paris, 1937.
- Molchanov, Stanislav; Ruzmaikin, Alexander. Lyapunov exponents and distributions of magnetic fields in dynamo models. The Dynkin Festschrift, 287--306, Progr. Probab., 34, Birkhäuser Boston, Boston, MA, 1994. MR1311726
- Pólya, G.; Szegő, G. Problems and theorems in analysis. Vol. I: Series, integral calculus, theory of functions. Translated from the German by D. Aeppli Die Grundlehren der mathematischen Wissenschaften, Band 193. Springer-Verlag, New York-Berlin, 1972. xix+389 pp. MR0344042
- Rogozin, B. A. An estimate of the concentration functions. (Russian) Teor. Verojatnost. i Primenen 6 1961 103--105. MR0131893

This work is licensed under a Creative Commons Attribution 3.0 License.