On criteria of disconnectedness of $\Lambda$-Fleming-Viot support
Abstract
The totally disconnectedness of support for super Brownian motion in high dimensions is well known. In this paper, we prove that similar results also hold for $\Lambda$-Fleming-Viot process with Brownian spatial motion provided that the associated $\Lambda$-coalescent does not come down from infinity fast enough. Our proof is another application of the lookdown particle representation for $\Lambda$-Fleming-Viot process. We also discuss the disjointness of independent $\Lambda$-Fleming-Viot supports and ranges in high dimensions. The disconnectedness of the $\Lambda$-Fleming-Viot support remains open in certain low dimensions.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-16
Publication Date: August 11, 2014
DOI: 10.1214/ECP.v19-3208
References
- Abraham, Romain. On the connected components of the support of super Brownian motion and of its exit measure. Stochastic Process. Appl. 60 (1995), no. 2, 227--245. MR1376802
- Berestycki, Julien; Berestycki, Nathanaël; Limic, Vlada. The $\Lambda$-coalescent speed of coming down from infinity. Ann. Probab. 38 (2010), no. 1, 207--233. MR2599198
- Bertoin, Jean; Le Gall, Jean-François. Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003), no. 2, 261--288. MR1990057
- Bertoin, Jean; Le Gall, Jean-François. Stochastic flows associated to coalescent processes. II. Stochastic differential equations. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), no. 3, 307--333. MR2139022
- Bertoin, Jean; Le Gall, Jean-Francois. Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 (2006), no. 1-4, 147--181 (electronic). MR2247827
- Birkner, Matthias; Blath, Jochen. Measure-valued diffusions, general coalescents and population genetic inference. Trends in stochastic analysis, 329--363, London Math. Soc. Lecture Note Ser., 353, Cambridge Univ. Press, Cambridge, 2009. MR2562160
- Birkner, Matthias; Blath, Jochen; Capaldo, Marcella; Etheridge, Alison; Möhle, Martin; Schweinsberg, Jason; Wakolbinger, Anton. Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 (2005), no. 9, 303--325 (electronic). MR2120246
- Blath, Jochen. Measure-valued processes, self-similarity and flickering random measures. Fractal geometry and stochastics IV, 175--196, Progr. Probab., 61, Birkhäuser Verlag, Basel, 2009. MR2762677
- Dawson, Donald A.; Vinogradov, Vladimir. Almost-sure path properties of $(2,d,\beta)$-superprocesses. Stochastic Process. Appl. 51 (1994), no. 2, 221--258. MR1288290
- Delmas, Jean-François. Path properties of superprocesses with a general branching mechanism. Ann. Probab. 27 (1999), no. 3, 1099--1134. MR1733142
- Donnelly, Peter; Kurtz, Thomas G. A countable representation of the Fleming-Viot measure-valued diffusion. Ann. Probab. 24 (1996), no. 2, 698--742. MR1404525
- Donnelly, Peter; Kurtz, Thomas G. Particle representations for measure-valued population models. Ann. Probab. 27 (1999), no. 1, 166--205. MR1681126
- Etheridge, Alison; March, Peter. A note on superprocesses. Probab. Theory Related Fields 89 (1991), no. 2, 141--147. MR1110534
- Konno, N.; Shiga, T. Stochastic partial differential equations for some measure-valued diffusions. Probab. Theory Related Fields 79 (1988), no. 2, 201--225. MR0958288
- Liu, Huili; Zhou, Xiaowen. The compact support property for the $\Lambda$-Fleming-Viot process with underlying Brownian motion. Electron. J. Probab. 17 (2012), no. 73, 20 pp. MR2968680
- Liu, H. and Zhou, X.: Some support properties for a class of Λ-Fleming-Viot processes. Accepted by phAnnales de I'Institut Henri Poincaré (B), Probabilités et Statistiques. Available at http://arxiv.org/abs/1307.3990.
- Perkins, Edwin A. Conditional Dawson-Watanabe processes and Fleming-Viot processes. Seminar on Stochastic Processes, 1991 (Los Angeles, CA, 1991), 143--156, Progr. Probab., 29, Birkhäuser Boston, Boston, MA, 1992. MR1172149
- Perkins, Edwin A. Measure-valued branching diffusions and interactions. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 1036--1046, Birkhäuser, Basel, 1995. MR1404003
- Perkins, Edwin. Dawson-Watanabe superprocesses and measure-valued diffusions. Lectures on probability theory and statistics (Saint-Flour, 1999), 125--324, Lecture Notes in Math., 1781, Springer, Berlin, 2002. MR1915445
- Pitman, Jim. Coalescents with multiple collisions. Ann. Probab. 27 (1999), no. 4, 1870--1902. MR1742892
- Ruscher, J. G.: Properties of superprocesses and interacting particle systems, Diploma Thesis, Technische Universitddottextat Berlin, 2009.
- Sagitov, Serik. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (1999), no. 4, 1116--1125. MR1742154
- Schweinsberg, Jason. A necessary and sufficient condition for the $\Lambda$-coalescent to come down from infinity. Electron. Comm. Probab. 5 (2000), 1--11 (electronic). MR1736720
- Tribe, Roger. The connected components of the closed support of super Brownian motion. Probab. Theory Related Fields 89 (1991), no. 1, 75--87. MR1109475

This work is licensed under a Creative Commons Attribution 3.0 License.