A characterization of the Poisson process revisited
Abstract
We show that the splitting-characterization of the Poisson point process is an immediate consequence of the Mecke-formula.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-5
Publication Date: October 3, 2014
DOI: 10.1214/ECP.v19-3622
References
- Assuncao, R. M.; Ferrari, P. A. Independence of thinned processes characterizes the Poisson process: an elementary proof and a statistical application. TEST 16 (2007), no. 2, 333--345. MR2393658
- Brown, Timothy C.; Xia, Aihua. How many processes have Poisson counts? Stochastic Process. Appl. 98 (2002), no. 2, 331--339. MR1887539
- Fichtner, Karl-Heinz. Charakterisierung Poissonscher zufälliger Punktfolgen und infinitesemale Verdünnungsschemata. (German) Math. Nachr. 68 (1975), 93--104. MR0383522
- Karr, Alan F. Point processes and their statistical inference. Probability: Pure and Applied, 2. Marcel Dekker, Inc., New York, 1986. xii+490 pp. ISBN: 0-8247-7513-9 MR0851982
- Mecke, J. Stationäre zufällige Maße auf lokalkompakten Abelschen Gruppen. (German) Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 1967 36--58. MR0228027
- Mecke, J.: Random measures, Classical lectures, Walter Warmuth Verlag (2011).
- Nehring, B., Point processes in Statistical Mechanics: A cluster expansion approach, Thesis, Potsdam University (2012).
- Nehring, B., Zessin, H., The Papangelou process. A concept for Gibbs, Fermi and Bose processes. Izvestiya NAN Armenii: Matematika 46, 49 - 66 (2011).

This work is licensed under a Creative Commons Attribution 3.0 License.