Geometric Ergodicity and Hybrid Markov Chains
Jeffrey S. Rosenthal (University of Toronto)
Abstract
Various notions of geometric ergodicity for Markov chains on general state spaces exist. In this paper, we review certain relations and implications among them. We then apply these results to a collection of chains commonly used in Markov chain Monte Carlo simulation algorithms, the so-called hybrid chains. We prove that under certain conditions, a hybrid chain will "inherit" the geometric ergodicity of its constituent parts.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 13-25
Publication Date: May 14, 1997
DOI: 10.1214/ECP.v2-981
References
- S. Asmussen (1987), Applied probability and queues. John Wiley & Sons, New York. Math Review link
- J. R. Baxter and J. S. Rosenthal (1995), Rates of convergence for everywhere-positive Markov chains. Stat. Prob. Lett. 22, 333-338. Math Review link
- R. N. Bhattacharya (1982), On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Z. Wahrscheinlichkeitstheorie Verw. gebiete 60, 185-201. Math Review link
- R. Carmona and A. Klein (1983), Exponential moments for hitting times of uniformly ergodic Markov processes. Ann. Prob. 11, 648-655. Math Review link
- K. S. Chan and C. J. Geyer (1994), Discussion paper. Ann. Stat. 22, 1747-1758. Math Review article not available.
- J. B. Conway (1985), A course in functional analysis. Springer-Verlag, New York. Math Review link
- Y. Derriennic and M. Lin (1996), Sur le theoreme limite central de Kipnis et Varadhan pour les chaines reversibles ou normales. Comptes Rendus de l'Academie des Sciences, Serie I, 323, No. 9, 1053-1058. Math Review link
- J. L. Doob (1994), Measure theory. Springer-Verlag, New York. Math Review link
- S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth (1987), Hybrid Monte Carlo. Phys. Lett. B 195, 216-222. Math Review article not available.
- A. E. Gelfand and A. F. M. Smith (1990), Sampling based approaches to calculating marginal densities. J. Amer. Stat. Assoc. 85, 398-409. Math Review link
- C. Geyer (1992), Practical Markov chain Monte Carlo. Stat. Sci. 7, No. 4, 473-483. Math Review article not available.
- P. J. Green (1994), Reversible jump MCMC computation and Bayesian model determination. Tech. Rep., Dept. Mathematics, U. of Bristol. Math Review article not available.
- P. E. Greenwood, I. W. McKeague, and W. Wefelmeyer (1995), Outperforming the Gibbs sampler empirical estimator for nearest neighbour random fields. Tech. Rep., Dept. Mathematics, U. of British Columbia. Math Review article not available.
- W. K. Hastings (1970), Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109. Math Review article not available.
- N. Jain and B. Jamison (1967), Contributions to Doeblin's theory of Markov processes. Z. Wahrsch. Verw. Geb. 8, 19-40. Math Review article not available.
- C. Kipnis and S. R. S. Varadhan (1986), central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104, 1-19. Math Review link
- N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953), Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087-1091. Math Review article not available.
- S. P. Meyn and R. L. Tweedie (1993), Markov chains and stochastic stability, Springer-Verlag, London. Math Review link
- S. P. Meyn and R. L. Tweedie (1994), Computable bonds for convergence rates of Markov chains. Ann. Appl. Prob. 4, 981-1011. Math Review link
- R. M. Neal (1993), Probabilistic inference using Markov chain Monte Carlo methods. Tech. Rep. CRG-TR-93-1, Dept. Comp. Sci., U. of Toronto. Math Review article not available.
- E. Nummelin (1984), General irreducible Markov chains and non-negative operators. Cambridge University Press. Math Review link
- E. Nummelin and R. L. Tweedie (1978), Geometric ergodicity and $R$-positivity for general Markov chains. Ann. Prob. 6, 404-420. Math Review article not available.
- S. Orey (1971), Lecture notes on limit theorems for Markov chain transition probabilities. Van Nostrand Reinhold, London. Math Review article not available.
- M. Reed and B. Simon (1972), Methods of modern mathematical physics. Volume I: Functional analysis. Academic Press, New York. Math Review article not available.
- G. O. Roberts and R. L. Tweedie (1996), Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83, 95-110. Math Review link
- M. Rosenblatt (1962), Random Processes. Oxford University Press, New York. Math Review article not available.
- J. S. Rosenthal (1995), Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Stat. Assoc. 90, 558-566. Math Review link
- R. L. Royden (1968), Real analysis, 2nd ed. MacMillan, New York. Math Review article not available.
- W. Rudin (1991), Functional Analysis, 2nd ed. McGraw-Hill, New York. Math Review link
- A. F. M. Smith and G. O. Roberts (1993), Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). J. Roy. Stat. Soc. Ser. B 55, 3-24. Math Review link
- L. Tierney (1994), A note on Metropolis Hastings kernels for general state spaces. Tech. Rep. 606, School of Statistics, U. of Minnesota. Math Review link
- R. L. Tweedie (1978), Geometric ergodicity and $R$-positivity for general Markov chains. Ann. Prob. 6, 404-420. Math Review article not available.
- D. Vere-Jones (1962), Geometric ergodicity in denumerable Markov chains. Quart. J. Math. Oxford (2) 13, 7-28. Math Review article not available.

This work is licensed under a Creative Commons Attribution 3.0 License.