Strong Laws and Summability for Sequences of $\phi$-Mixing Random Variables in Banach Spaces
Abstract
In this note the almost sure convergence of stationary, $\varphi$-mixing sequences of random variables with values in real, separable Banach spaces according to summability methods is linked to the fulfillment of a certain integrability condition generalizing and extending the results for i.i.d. sequences. Furthermore we give via Baum-Katz type results an estimate for the rate of convergence in these laws.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 27-41
Publication Date: May 14, 1997
DOI: 10.1214/ECP.v2-982
References
- A. de Acosta, On large deviations of sums of independent random vectors, In: Beck A. et al: Probability in Banach Spaces 5, Lecture Notes in Mathematics 1153, (1984) 1--14, Springer Verlag. Math Review link
- A. de Acosta and J. Kuelbs, Limit Theorems for Moving Averages of independent Random Vectors, Z. W-theorie verw. Geb. 64 (1983) 67--123. Math Review link
- N. H. Bingham, Summability methods and dependent strong laws, In: Eberlein, E.; Taqqu, M.S.: Dependence in Probability and Statistics, (1986) 291--300, Birkhauser. Math Review link
- N. H. Bingham, Extensions of the strong law, in Analytic and Geometric Stochastics: Adv. Appl. Probab. Supplement (1986) 27--36. Math Review link
- N. H. Bingham, Moving averages, In: Edgar, G.A.; Sucheston, L.: Almost Everywhere Convergence Proc. Conf. Columbus OH, (1988) 131--145, New York: Academic Press. Math Review link
- N. H. Bingham and C. M. Goldie, Riesz Means and Self-Neglecting Functions, Math. Z. 199 (1988) 443--454. Math Review article not available.
- N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, (1987) Cambridge University Press. Math Review link
- D. Borwein and W. Kratz, An O-Tauberian theorem and a High Indices theorem for power series methods of summability, Camb. Phil. Math. Soc. 115 (1994) 365--375. Math Review article not available.
- A. Hozorgnia and R. Bhaskara, On summability methods and limit theorems for Banach space random variables, Bull. Inst. Math. Acad. Sinica 7 (1979) 1--6. Math Review link
- R. Bradley, Basic properties of strong mixing conditions, In: Eberlein, E.; Taqqu, M.S.: Dependence in Probability and Statistics, (1986) 165--192, Birkhauser. Math Review article not available.
- L. Breiman, Probability, Classics in applied mathematics 7 (1992) SIAM. Math Review link
- Y. S. Chow, Delayed sums and Borel summability of independent, identically distributed random variables, Bull. Inst. Math. Acad. Sinica 1 (1973) 207--220. Math Review article not available.
- G. H. Hardy, Divergent Series, (1949) Oxford Press. Math Review article not available.
- B. Heinkel, On the almost sure summability of B-valued random variables, In: Dudley R. M. et al: Probability in Banach Spaces 8, (1991) 325--338, Birkhauser. Math Review article not available.
- B. Heinkel. On Valiron means of B-valued random variables, Lith. Math. Journal 32 (29) (1992) 162--173. Math Review link
- E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups (198) AMS. Math Review article not available.
- M. Iosifescu and R. Theodorescu, Random Processes and Learning (1969) Springer Verlag. Math Review article not available.
- N. C. Jain, Tail probabilities for sums of independent Banach space random variables, Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975) 155--166. Math Review article not available.
- R. Kiesel, Power series methods and almost sure convergence Math. Proc. Camb. Phil. Soc. 113 (1993) 195--204. Math Review article not available.
- R. Kiesel, General Norlund transforms and power series methods, Math. Z. 214 (1993) 273--286. Math Review article not available.
- R. Kiesel, Starke Gesetze fur gewichtele Summen von Zufallsvariablen, Habilitationsschrift, Universitat Ulm (1995). Math Review article not available.
- R. Kiesel, Summability and strong laws for varphi-mixing random variables, J. Theo. Prob. (to appear). Math Review article not available.
- R. Kiesel and U. Stadtmuller, Erdos-Renyi-Shepp laws and weighted sums of independent identically distributed random variables, J. Theo. Prob., 9(4) (1996) 961--982. Math Review article not available.
- T. L. Lai, Summability methods for independent identically distributed random variables, Proc. Amer. Math. Soc. 45 (1974) 253--261. Math Review article not available.
- T. L. Lai, Convergence rates in the strong law of large numbers for random variables taking values in Banach spaces, Bull. Inst. Math. Acad. Sinica 2 (1) (1974) 67--85. Math Review article not available.
- N. Ledoux and M. Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Band 23 (1991) Springer Verlag. Math Review article not available.
- E. Liebscher, Strong convergence of sums of alpha-mixing random variables with applications to density estimation, Stoch. Proc. Appl. 65 (1996) 69--80. Math Review article not available.
- M. Peligrad, The r-quick Version of the Strong Law for Stationary varphi-mixing sequences, In: Edgar, G. A.; Sucheston, L., Almost everywhere Convergence, 335--348, Proc. Conf. Columbus OH, (1988), New York: Academic Press. Math Review link
- A. Peyerimhoff, Lectures on Summability, Lecture Notes in Mathematics, No. 107, (1969) Springer Verlag. Math Review article not available.
- U. Stadtmuller, On a family of summability methods and one-sided Tauberian conditions, J. Math. Analysis Appl. (to appear). Math Review link
- A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes, (1996) Springer Verlag. Math Review article not available.
- K. Zeller and W. Beekmann, Theorie der Limitierungsverfahren, (1970) Springer Verlag. Math Review article not available.

This work is licensed under a Creative Commons Attribution 3.0 License.