Uniform Upper Bound for a Stable Measure of a Small Ball
Tomasz Zak (Wroclaw University of Technology)
Abstract
P. Hitczenko, S.Kwapien, W.N.Li, G.Schechtman, T.Schlumprecht and J.Zinn stated the following conjecture. Let $\mu$ be a symmetric $\alpha$-stable measure on a separable Banach space and $B$ a centered ball such that $\mu(B)\le b$. Then there exists a constant $R(b)$, depending only on $b$, such that $\mu(tB)\le R(b)t\mu(B)$ for all $0 < t < 1$. We prove that the above inequality holds but the constant $R$ must depend also on $\alpha$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 75-78
Publication Date: September 16, 1998
DOI: 10.1214/ECP.v3-995
References
- P. Hitczenko, S. Kwapien, W.N. Li, G. Schechtman, T. Schlumprecht and J. Zinn (1998), Hypercontractivity and comparison of moments of iterated maxima and minima of independent random variables. Electronic Journal of Probability 3, 1-26, Paper 2 .
- R. LePage, M. Woodroofe and J. Zinn (1981), Convergence to a stable distribution via order statistics. Ann. Probab.9,624-632. Math. Review 82k:60049
- M. Lewandowski, M. Ryznar and T. Zak (1992), Stable measure of a small ball. Proc. Amer. Math. Soc.115,489-494. Math. Review 92i:60004
- N. Cressie (1975), A note on the behaviour of the stable distribution for small index $alpha$. Z. Wahrscheinlichkeitstheorie verw. Gebiete 33,61-64. Math. Review 52:1825

This work is licensed under a Creative Commons Attribution 3.0 License.