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ABSTRACT. In this paper, we investigate the growth of solutions of the differential equation
FE 4+ A 1 (2) D 4o Ay (2) f + Ao (2) f = F,wheredq (z),..., A1 (2), F (2)

= 0 are entire functions, and we obtain general estimates of the hyper-exponent of convergence
of distinct zeros and the hyper-order of solutions for the above equation.
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1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper, we will use the standard notations of the Nevanlinna value distribution theory
(see [8]). In addition, we use the notation$f) andx (f) to denote respectively the order
and the lower order of growth of (z). Recalling the following definitions of hyper-order and
hyper-exponent of convergence of distinct zeros.

Definition 1.1. ([3] — [6], [12]). Let f be an entire function. Then the hyper-order /) of
f (2) is defined by

(1.2) oo (f) = lim M = Iim logloglog M (r, f)

r—-+00 10g r r—-+00 log r

where T (r, f) is the Nevanlinna characteristic function ¢f (see [8]), andM (r, f) =
max|;|—, | f (2)].
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2 BENHARRAT BELAIDI

Definition 1.2. ([5])). Let f be an entire function. Then the hyper-exponent of convergence of
distinct zeros off (z) is defined by

_ loglog N <7°7 %)

1.2 = i
(1.2) M f) = lim ——
where N (r, %) is the counting function of distinct zeros ¢f(z) in {|z| < r}. We define the
linear measure of a sét C [0, +oo[ by m (E) = 0+°° X (t) dt and the logarithmic measure
of asetF” C [1,+oo by Im (F) = [, X204 ‘wherey is the characteristic function of a set
H. The upper and the lower densitiesiofare defined by
E E
(1.3) densE = lim w, densE = lim w
r—+00 r r——+oo r

The upper and the lower logarithmic densities-oare defined by

S ——Im(F N[l Im(FnNll
(1.4) logdens (F) = lim M, logdens (F) = lim M

r—+00 log r - r——+o0 log r

In the study of the solutions of complex differential equations, the growth of a solution is a
very important property. Recently, Z. X. Chen and C. C. Yang have investigated the growth of
solutions of the non-homogeneous linear differential equation of second order
(1.5) '+ A () [+ A (2) f = F,
and have obtained the following two results:

Theorem A. [5, p. 276] Let E be a set of complex numbers satisfyifags{|z| : z € E'} > 0,
and letA (z), 4; () be entire functions, with (A;) < ¢ (Ap) = o < +oo such that for a real
constant” (> 0) and for any giverz > 0,

(1.6) A1 ()] < exp (0(1)[2]77)
and
(1.7) [ Ao (2)] > exp (140(1)) C[2]77)

asz — oo for z € E, and letF' = 0 be an entire function with (F') < +o00. Then every entire
solution f (=) of the equation| (1|5) satisfies (f) = o, (f) = o, with at most one exceptional
solution f, satisfyingo (fo) < o.

Theorem B. [5, p. 276] LetA, (z), Ay (2)% 0 be entire functions such that(4,) < o (4;) <
% (or A, is transcendentaly (A;) = 0, Ay is a polynomial), and lef’= 0 be an entire function.
Consider a solutiory of the equation[ (1]5), we have
(i) If o (F') < 0 (Ay) (or Fis a polynomial whent, is transcendentaly (4;) =0, Apis a
polynomial), then every entire solutighz) of ) satisfies, (f) = o2 (f) = o (4y).
(i) If 0 (A1) < o(F) < +o0, then every entire solutioffi (z) of ) satisfies\, (f) =
o9 (f) = 0 (A1), with at most one exceptional solutigip satisfyinge (fy) < o (A1).

Fork > 2, we consider the non-homogeneous linear differential equation
(1.8) fO LA () fF D b A () f + A (2) f=F,

whereA, (z),..., Ax—1 () and F' (z) # 0 are entire functions. It is well-known that all solu-
tions of equation (1]8) are entire functions

Recently, the concepts of hyper-order [3] - [6] and iterated order [10] were used to further
investigate the growth of infinite order solutions of complex differential equations. The main
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purposes of this paper are to investigate the hyper-exponent of convergence of distinct zeros and
the hyper-order of infinite order solutions for the above equation. We will prove the following
two theorems:

Theorem 1.1.Let £ be a set of complex numbers satisfyitigps{|z| : = € E} > 0, and let
Ao (2),..., Ak—1(2) be entire functions, witthax{co (4;) : j =1,...,k} < 0 (4y) =0 <
+00 such that for real constants < 5 < « and for any giverx > 0,

(1.9) A (2)| <exp (B12]7°) (G=1,...,k—1)
and
(1.10) Ao (2)] = exp (a]2]77)

asz — oo for z € E, and let/"# 0 be an entire function withr () < +oo. Then every entire
solution f (z) of the equation| (1|8) satisfies (f) = o, (f) = o, with at most one exceptional
solution f; satisfyingo (fo) < o.

Theorem 1.2.Let A, (2), ..., Ax_1 () be entire functions with, (=)= 0 such thainax{c (4;) :
j=0,2,...,k—1} <o (A)) < 3 (or A; is transcendentaly (A;) = 0, Ay, As, ..., Ay_; are
polynomials), and lef"= 0 be an entire function. Consider a solutigrof the equation[(1]8),
we have
(i) If o (F) < o(A;) (or F is a polynomial whemd, is transcendentalg (4;) = 0,
Ag, A, ..., Ax_1 are polynomials), then every entire solutigriz) of (1.8) satisfies
A2 (f) = 02 (f) = o (Ay). _
(i) If o (A1) < o (F) < 400, then every entire solutiofi (z) of (1.8) satisfies), (f) =
o9 (f) = o (A1), with at most one exceptional solutigh satisfyinge (fy) < o (A1).

2. PRELIMINARY LEMMAS

Our proofs depend mainly upon the following lemmas.

Lemma 2.1. ([3]). Let E be a set of complex numbers satisfyifwgs {|z| : z € E} > 0, and
let Ay (2),..., Ax_1 (2) be entire functions, withmax{o (4;): j=1,...,k} <o (4y) =0 <
oo such that for some real constarits< 5 < « and for any giverz > 0,

(2.1) [4; (=) <exp (B12]77) (j=1,..., k=1)
and
(2.2) |Ag (2)] > exp (ar]2]77%)

asz — oo for z € E. Then every entire solutiofi£ 0 of the equation
(2.3) FO+ A () fF D A () f + A (2) f=0
satisfiesr (f) = +oo andos (f) = o (Ay) .

Lemma 2.2. ([[7]). Let f (z) be a nontrivial entire function, and let > 1 ande > 0 be given
constants. Then there exist a constant 0 and a set C [0, +o00) having finite linear measure
such that for allz satisfying|z| = r ¢ E, we have

‘ £ (2)
[ ()

(2.4) <c[T (ar, f)rflogT (ar, f)}] (j EN).
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Lemma 2.3. ([7]). Let f(z) be a transcendental meromorphic function, anddet- 1 be
a given constant. Then there exists a BetC (1, +o00) of finite logarithmic measure and a
constantB > 0 that depends only oa and (m,n) (m, n positive integers withn < n) such
that for all z satisfying|z| = r ¢ [0, 1] U E, we have

(n) n—m
‘j:(m) ((Zz)) <B {—T <Oé:’ /) (log®r)log T (ar, f) )

Lemma 2.4. ([B]). Letf(z) = > >, a,2" be an entire function of infinite order with the
hyper-ordero, (f) = o, pu (r) be the maximum term, i(r) = max{|a,|r";n =0,1,...}
and letv; (r) be the central index of, i.ev; (1) = max{m, u (r) = |a,|r™}. Then

(2.5)

(2.6) lim M —0

T—+00 log r
Lemma 2.5. (Wiman-Valiron,[9, [11]). Let f (z) be a transcendental entire function and let
be a point with|z| = r at which|f (z)| = M (r, f). Then for all|z| outside a seE’ of r of finite
logarithmic measure, we have

FOG) (v ()Y ) o
(2.7) IO ( . ) (1+0(1)) (5 isanintegery ¢ E).

Lemma 2.6. ([1]). Let f (=) be an entire function of order (f) = o < 3, and denoted (r) =
infj. = log | f ()], B (r) = sup,_, log|f ()| . If o0 < a <1, then

(2.8) logdens{r: A(r) > (cosma)B(r)} >1— g.

Lemma 2.7. ([2]). Let f (=) be an entire function with (f) = 1 < 5 andp < o (f) = o. If
p <6 <min(o,1)andd < a < 1, then

(2.9) logdens {r: A(r) > (cosma) B(r) >’} > C(0,4,a),

whereC (o, 6, «v) is a positive constant depending only @ anda.

Lemma 2.8. Suppose thatl, (z), ..., Ax_; (2) are entire functions such that, (z)# 0 and

1
(2.10) max {0 (4,) :j:0,2,...,k—1}<0(A1)<§.

Then every transcendental solutiget 0 of (2.3) is of infinite order.

Proof. Using the same argument as in the proof of Theorem 4lin [6, p. 222], we conclude that
o (f) = +oc. 0

3. PROOF OF THEOREM [1.1

We affirm that[(1.B) can only possess at most one exceptional solfytaurch that ( fo) < o.
In fact, if f* is a second solution with (f*) < o, theno (fo — f*) < 0. But fo — f*is a
solution of the corresponding homogeneous equalion (2.3) df (1.8). This contradicts Lemma
2.]. We assume that is a solution of [(1.B) witho(f) = +o0 and fi,..., fx arek entire
solutions of the corresponding homogeneous equaftiofn (2.3). Then by LEmma 2.1, we have

o2 (fj) =0 (A) =0 (j=1,..., k). By variation of parameters, can be expressed in the
form
(3.1) f(z)=Bi(2) fi(2) + -+ Bi(z) fu(2),
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whereB; (z), ..., By (z) are determined by

By (2) fi(2) + -+ + By (2) fu (2) = 0

By (2) fi(2) ++++ By (2) fi (2) = 0
(3.2) Bi()fy @)+ B fy () = F.

Noting that the Wronskiah (f1, fa, - . ., f) is a differential polynomial irfy, fo, ..., fr with
constant coefficients, it easy to deduce thatil’) < o4 (f;) = 0 (4y) = 0. Set

(1)
S0 0,000 fr

k—1 k—1

FED R Y

whereg; are differential polynomials itf;, f, . . ., fi with constant coefficients. So
Wi F g

(3.4) 09 (9:) < o2 (fj) =0 (Ao), B; = WS W (

i=1,...,k)
and
(35) o (B) =0 (B) < max (o3 (F), 0(A) = (Ag) (i=1,....%),
because, (F') = 0 (o (F) < +o0) . Then from [(3.1) and (3]5), we get
(3.6) 02 (f) < max (02 (f;), 02(Bi)) = o (Ao).

Now from (1.8), it follows that

’

f(k—l) F
f Ll

Then by Lemma 2]2, there exists a 8t C [0, +oo) with a finite linear measure such that for

all z satisfying|z| = r ¢ E;, we have

‘f(j) (2)
f(2)

Also, by the hypothesis of Theordm 1.1, there exists @%atith dens {|z|: z € Ey} > 0

such that for alk satisfying z € E5, we have

f

(k)
@7 () < \fT AL+

G|

(3.8) <r[T@,HF GG=1,..., k).

(3.9) A ()| < exp (B2 (j=1,.... k= 1)
and

(3.10) A (2)] = exp (ar]2]77)

asz — oo. Sinceo (f) = +oo, then for a given arbitrary large> o (F),
(3.11) M (r, f) > exp (1)

holds for sufficiently large. On the other hand, for a giverwith 0 < ¢ < p — o (F'), we have

(312)  |F(2)| <exp (1)), ’%

<exp (r"E — 1) -0 (r — +00),

where|f (z)| = M (r, f) and|z| = r. Hence from|[(3.J7) {(3.10) anfl (3]12), it follows that for
all z satisfying z € E», |z| =r ¢ Ey and|f (2)| = M (r, f)

(313)  exp(als7%) < 2 [T (212], HFF [+ (= Dexp (81277)] + 0 (1)
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asz — o0o. Thus there exists a sét C [0, +o00) with a positive upper density such that
(3.14) exp (ar’™®) < drexp (8r° ) [T (2r, fFH
asr — +ocin E, whered (> 0) is some constant. Therefore

loglog T
(3.15) oo (f) = Tmnogloe T f) o
r—400 log r

Sinces is arbitrary, then by[ (3.15) we get (f) > o (Ay) = 0. This and the fact that, (f) < o
yield o5 (f) = 0 (Ag) = 0.

By (1.8), it is easy to see that ffhas a zero at, of ordera (> k), thenF” must have a zero
at z of orderas — k. Hence,

(3.16) n (r, %) <kmn (7’, %) +n (r, %)

and

(3.17) N (7", %) <kN (r, %) + N (r, %) .

Now (1.8) can be rewritten as
1 1 /f® (k—1) /
(3.18) —=—(i—+M4f -%~+&L+AQ.

fFXf f f
By (3.18), we have

1 k ) k ) 1
. -] < — i — .
(3.19) m(r,f> _]Z:;m <r, 7 ) ;m(r, k »%—m(r,p) +0(1)
By (3.17) and[(3.19), we get for| = r outside a seE; of finite linear measure,

(3.20) T(r,f)=T (r, %) +0(1)

<KV (13 ) + T Aes) 4 T (0 F) 4 0 Qog (0T (1)

Jj=1

For sufficiently large-, we have

(3.21) O (logr + 108 T (1, )) < 3T (1, f)

(3.22) T(r,Ag) + -+ T (r,Ap_y) < krote

(3.23) T (r, F) < roB)te,

Thus, by [(3.2D) {(3.23), we have

(3.24) T(r,f) <2k N (T, %) + 2k 1ot 4 2r7EFE (12| =1 ¢ E).

Hence for anyf with o, (f) = o, by (3.24), we haver, (f) < X, (f). Therefore, X, (f) =
oy (f) = 0.
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4. PROOF OF THEOREM [1.2

Assume thaff (z) is an entire solution of (1]8). For case (i), we assuntel;) > 0 (when
o (A1) = 0, Theorenj 12 clearly holds). By (1.8) we get

P f® (k=1)
(4.1) Alzf_ff_/_Alc—lfT_"'_AQ%_AO%

_Ff W A f f

— — A —— — = Ay — Ap

I N
By Lemma[2.B, we see that there exists aBetC (1, +o0) with finite logarithmic measure
such that for alk satisfying |z| = r ¢ [0, 1] U E4, we have
(4.2) ‘f 705 <Br[T@r O (G=2,..., k).
Now setb = max{o(4;):7=0,2,..., k—1; o (F)}, and we choose real numbets /3
such that
(4.3) b<a<f<o(A).
Then for sufficiently large, we have
(4.4) [4; (2)] Sexp (r?) (j=0,2,...,k—1),
(4.5) |F (2)] <exp(rY).

By Lemma 2.5 (ifu (A1) = o (A;)) or Lemmd 2. (ifu (A1) < o (A1)) there exists a subset
Es C (1, 400) with logarithmic measurén (Es5) = oo such that for alk satisfying|z| = r €
Es5, we have

(4.6) | Ay (2)] > exp (7).
SinceM (r, f) > 1 for sufficiently larger, we have by[(4)5)

£ (2)]
4.7 < exp (r?).
(4.7) M) S P
On the other hand, by Lemra .5, there exists dget (1, +o0) of finite logarithmic measure
such that[(2]7) holds for some poinsatisfying|z| = r ¢ [0,1] U Es and|f (z)| = M (r, f).
By (2.1), we get

OIS NAGINE!
f(z) = 272 | "o
or
(4.8) '%%%ﬂﬂ

Now by (4.1), (4.2),[(4}4), andl (4.6) |- (4.8), we get
exp (r’) < Lr [T (2r, DI 2exp (%) 2r

for |z| =r € E5\ ([0,1] U By U Eg) and|f (2)| = M (r, ), whereL (> 0) is some constant.
From this and sincg is arbitrary, we get (f) = +oo and02 (f) >0 (Ay).
On the other hand, for any giver> 0, if » is sufficiently large, we have

(4.9) A; (2)] <exp (r7F) (j=0,1,..., k1),
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(4.10) |F (2)] < exp (r7A40Fe) .
SinceMM (r, f) > 1 for sufficiently larger, we have by[(4.70)
(411) |F(Z)| S exp (TU(AI)“FE) )

M (r, f)
Substituting[(2.]7)[(4]9) anfl (4.]11) info (]L.8), we obtain

(4.12) (”f (”'"))k 11+ 0(1)] < exp (r7HA0+) (”f (T>)H 11+ 0(1)|

2] ||

exp (roA+e v (r) o 0
+ exp ( )( o] > L+o(D)]+

+ exp (r"(Al)Jrg) (—Vf (r)) 1+o0(1)] + 2exp (ro(Ale) ,
2

|
wherez satisfiesz| = r ¢ [0,1] U Eg and|f (z)| = M (r, f). By (4.12), we get

|
— logl
(4.13) o loglog vy (1)

r—+00 log r

Sincee is arbitrary, by[(4.18) and Lemnfa 2.4 we hawg(f) < o (A;). This and the fact that
09 (f) >0 (Al) y|e|d D) (f) =0 (Al) o
By a similar argument to that used in the proof of Theorerh 1.1, we cahget) = o (f) =
o (Al) .
Finally, case (ii) can also be obtained by using Lemiméa 2.8 and an argument similar to that in
the proof of Theorerp 1] 1.

S O'(A1> + .
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