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ABSTRACT. In this paper, we investigate the growth of solutions of the differential equation
f (k) + Ak−1 (z) f (k−1) + · · ·+ A1 (z) f

′
+ A0 (z) f = F, whereA0 (z) , . . . , Ak−1 (z) , F (z)

/≡ 0 are entire functions, and we obtain general estimates of the hyper-exponent of convergence
of distinct zeros and the hyper-order of solutions for the above equation.
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1. I NTRODUCTION AND STATEMENT OF RESULTS

In this paper, we will use the standard notations of the Nevanlinna value distribution theory
(see [8]). In addition, we use the notationsσ (f) andµ (f) to denote respectively the order
and the lower order of growth off (z). Recalling the following definitions of hyper-order and
hyper-exponent of convergence of distinct zeros.

Definition 1.1. ([3] – [6], [12]). Let f be an entire function. Then the hyper-orderσ2 (f) of
f (z) is defined by

(1.1) σ2 (f) = lim
r→+∞

log log T (r, f)

log r
= lim

r→+∞

log log log M (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function off (see [8]), andM (r, f) =
max|z|=r |f (z)| .
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2 BENHARRAT BELAÏDI

Definition 1.2. ([5]). Let f be an entire function. Then the hyper-exponent of convergence of
distinct zeros off (z) is defined by

(1.2) λ2 (f) = lim
r→+∞

log log N
(
r, 1

f

)
log r

,

whereN
(
r, 1

f

)
is the counting function of distinct zeros off (z) in {|z| < r}. We define the

linear measure of a setE ⊂ [0, +∞[ by m (E) =
∫ +∞

0
χE (t) dt and the logarithmic measure

of a setF ⊂ [1, +∞[ by lm (F ) =
∫ +∞

1
χF (t)dt

t
, whereχH is the characteristic function of a set

H. The upper and the lower densities ofE are defined by

(1.3) densE = lim
r→+∞

m (E ∩ [0, r])

r
, densE = lim

r→+∞

m (E ∩ [0, r])

r
.

The upper and the lower logarithmic densities ofF are defined by

(1.4) log dens (F ) = lim
r→+∞

lm (F ∩ [1, r])

log r
, log dens (F ) = lim

r→+∞

lm (F ∩ [1, r])

log r
.

In the study of the solutions of complex differential equations, the growth of a solution is a
very important property. Recently, Z. X. Chen and C. C. Yang have investigated the growth of
solutions of the non-homogeneous linear differential equation of second order

(1.5) f
′′

+ A1 (z) f
′
+ A0 (z) f = F,

and have obtained the following two results:

Theorem A. [5, p. 276]. LetE be a set of complex numbers satisfyingdens{|z| : z ∈ E} > 0,
and letA0 (z), A1 (z) be entire functions, withσ (A1) ≤ σ (A0) = σ < +∞ such that for a real
constantC (> 0) and for any givenε > 0,

(1.6) |A1 (z)| ≤ exp
(
o (1) |z|σ−ε)

and

(1.7) |A0 (z)| ≥ exp
(
(1 + o (1)) C |z|σ−ε)

asz →∞ for z ∈ E, and letF /≡ 0 be an entire function withσ (F ) < +∞. Then every entire
solutionf (z) of the equation (1.5) satisfiesλ2 (f) = σ2 (f) = σ, with at most one exceptional
solutionf0 satisfyingσ (f0) < σ.

Theorem B. [5, p. 276]. LetA1 (z), A0 (z) /≡ 0 be entire functions such thatσ (A0) < σ (A1) <
1
2

(or A1 is transcendental,σ (A1) = 0, A0 is a polynomial), and letF /≡ 0 be an entire function.
Consider a solutionf of the equation (1.5), we have

(i) If σ (F ) < σ (A1) (or F is a polynomial whenA1 is transcendental,σ (A1) = 0, A0 is a
polynomial), then every entire solutionf (z) of (1.5) satisfiesλ2 (f) = σ2 (f) = σ (A1).

(ii) If σ (A1) ≤ σ (F ) < +∞, then every entire solutionf (z) of (1.5) satisfiesλ2 (f) =
σ2 (f) = σ (A1) , with at most one exceptional solutionf0 satisfyingσ (f0) < σ (A1).

Fork ≥ 2, we consider the non-homogeneous linear differential equation

(1.8) f (k) + Ak−1 (z) f (k−1) + · · ·+ A1 (z) f
′
+ A0 (z) f = F,

whereA0 (z) , . . . , Ak−1 (z) andF (z) /≡ 0 are entire functions. It is well-known that all solu-
tions of equation (1.8) are entire functions.

Recently, the concepts of hyper-order [3] – [6] and iterated order [10] were used to further
investigate the growth of infinite order solutions of complex differential equations. The main
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purposes of this paper are to investigate the hyper-exponent of convergence of distinct zeros and
the hyper-order of infinite order solutions for the above equation. We will prove the following
two theorems:

Theorem 1.1. Let E be a set of complex numbers satisfyingdens{|z| : z ∈ E} > 0, and let
A0 (z) , . . . , Ak−1 (z) be entire functions, withmax{σ (Aj) : j = 1, . . . , k} ≤ σ (A0) = σ <
+∞ such that for real constants0 ≤ β < α and for any givenε > 0,

(1.9) |Aj (z)| ≤ exp
(
β |z|σ−ε) (j = 1, . . . , k − 1)

and

(1.10) |A0 (z)| ≥ exp
(
α |z|σ−ε)

asz →∞ for z ∈ E, and letF /≡ 0 be an entire function withσ (F ) < +∞. Then every entire
solutionf (z) of the equation (1.8) satisfiesλ2 (f) = σ2 (f) = σ, with at most one exceptional
solutionf0 satisfyingσ (f0) < σ.

Theorem 1.2.LetA0 (z) , . . . , Ak−1 (z) be entire functions withA0 (z) /≡ 0 such thatmax{σ (Aj) :
j = 0, 2, . . . , k− 1} < σ (A1) < 1

2
(or A1 is transcendental,σ (A1) = 0, A0, A2, . . . , Ak−1 are

polynomials), and letF /≡ 0 be an entire function. Consider a solutionf of the equation (1.8),
we have

(i) If σ (F ) < σ (A1) (or F is a polynomial whenA1 is transcendental,σ (A1) = 0,
A0, A2, . . . , Ak−1 are polynomials), then every entire solutionf (z) of (1.8) satisfies
λ2 (f) = σ2 (f) = σ (A1).

(ii) If σ (A1) ≤ σ (F ) < +∞, then every entire solutionf (z) of (1.8) satisfiesλ2 (f) =
σ2 (f) = σ (A1) , with at most one exceptional solutionf0 satisfyingσ (f0) < σ (A1).

2. PRELIMINARY L EMMAS

Our proofs depend mainly upon the following lemmas.

Lemma 2.1. ([3]). LetE be a set of complex numbers satisfyingdens {|z| : z ∈ E} > 0, and
let A0 (z) , . . . , Ak−1 (z) be entire functions, withmax{σ (Aj) : j = 1, . . . , k} ≤ σ (A0) = σ <
+∞ such that for some real constants0 ≤ β < α and for any givenε > 0,

(2.1) |Aj (z)| ≤ exp
(
β |z|σ−ε) ( j = 1, . . . , k − 1)

and

(2.2) |A0 (z)| ≥ exp
(
α |z|σ−ε)

asz →∞ for z ∈ E. Then every entire solutionf /≡ 0 of the equation

(2.3) f (k) + Ak−1 (z) f (k−1) + · · ·+ A1 (z) f
′
+ A0 (z) f = 0

satisfiesσ (f) = +∞ andσ2 (f) = σ (A0) .

Lemma 2.2. ([7]). Letf (z) be a nontrivial entire function, and letα > 1 andε > 0 be given
constants. Then there exist a constantc > 0 and a setE ⊂ [0, +∞) having finite linear measure
such that for allz satisfying|z| = r /∈ E, we have

(2.4)

∣∣∣∣f (j) (z)

f (z)

∣∣∣∣ ≤ c [T (αr, f) rε log T (αr, f)]j (j ∈ N) .
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Lemma 2.3. ([7]). Let f (z) be a transcendental meromorphic function, and letα > 1 be
a given constant. Then there exists a setE ⊂ (1, +∞) of finite logarithmic measure and a
constantB > 0 that depends only onα and (m,n) (m, n positive integers withm < n) such
that for all z satisfying|z| = r /∈ [0, 1] ∪ E, we have

(2.5)

∣∣∣∣ f (n) (z)

f (m) (z)

∣∣∣∣ ≤ B

[
T (αr, f)

r
(logα r) log T (αr, f)

]n−m

.

Lemma 2.4. ([5]). Let f (z) =
∑∞

n=0 an zn be an entire function of infinite order with the
hyper-orderσ2 (f) = σ, µ (r) be the maximum term, i.eµ (r) = max{|an| rn; n = 0, 1, . . . }
and letνf (r) be the central index off , i.eνf (r) = max{m, µ (r) = |am| rm}. Then

(2.6) lim
r→+∞

log log νf (r)

log r
= σ.

Lemma 2.5. (Wiman-Valiron,[9, 11]). Let f (z) be a transcendental entire function and letz
be a point with|z| = r at which|f (z)| = M (r, f). Then for all|z| outside a setE of r of finite
logarithmic measure, we have

(2.7)
f (j) (z)

f (z)
=

(
νf (r)

z

)j

(1 + o (1)) (j is an integer,r /∈ E).

Lemma 2.6. ([1]). Letf (z) be an entire function of orderσ (f) = σ < 1
2
, and denoteA (r) =

inf |z|=r log |f (z)| , B (r) = sup|z|=r log |f (z)| . If σ < α < 1, then

(2.8) log dens {r : A (r) > (cos πα) B (r)} ≥ 1− σ

α
.

Lemma 2.7. ([2]). Letf (z) be an entire function withµ (f) = µ < 1
2

andµ < σ (f) = σ. If
µ ≤ δ < min

(
σ, 1

2

)
andδ < α < 1

2
, then

(2.9) log dens
{
r : A (r) > (cos πα) B (r) > rδ

}
> C (σ, δ, α) ,

whereC (σ, δ, α) is a positive constant depending only onσ, δ andα.

Lemma 2.8. Suppose thatA0 (z) , . . . , Ak−1 (z) are entire functions such thatA0 (z) /≡ 0 and

(2.10) max {σ (Aj) : j = 0, 2, . . . , k − 1} < σ (A1) <
1

2
.

Then every transcendental solutionf /≡ 0 of (2.3) is of infinite order.

Proof. Using the same argument as in the proof of Theorem 4 in [6, p. 222], we conclude that
σ (f) = +∞. �

3. PROOF OF THEOREM 1.1

We affirm that (1.8) can only possess at most one exceptional solutionf0 such thatσ (f0) < σ.
In fact, if f ∗ is a second solution withσ (f ∗) < σ, thenσ (f0 − f ∗) < σ. But f0 − f ∗ is a
solution of the corresponding homogeneous equation (2.3) of (1.8). This contradicts Lemma
2.1. We assume thatf is a solution of (1.8) withσ(f) = +∞ andf1, . . . , fk arek entire
solutions of the corresponding homogeneous equation (2.3). Then by Lemma 2.1, we have
σ2 (fj) = σ (A0) = σ (j = 1, . . . , k) . By variation of parameters,f can be expressed in the
form

(3.1) f (z) = B1 (z) f1 (z) + · · ·+ Bk (z) fk (z) ,
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whereB1 (z) , . . . , Bk (z) are determined by

B
′

1 (z) f1 (z) + · · ·+ B
′

k (z) fk (z) = 0

B
′

1 (z) f
′

1 (z) + · · ·+ B
′

k (z) f
′

k (z) = 0

· · · · · · · · · · · · · · · · · · · · ·

B
′

1 (z) f
(k−1)

1 (z) + · · ·+ B
′

k (z) f
(k−1)

k (z) = F.(3.2)

Noting that the WronskianW (f1, f2, . . . , fk) is a differential polynomial inf1, f2, . . . , fk with
constant coefficients, it easy to deduce thatσ2 (W ) ≤ σ2 (fj) = σ (A0) = σ. Set

(3.3) Wi =

∣∣∣∣∣∣∣∣∣
f1, . . . ,

(i)

0 , . . . , fk

· · ·
· · ·

f
(k−1)
1 , . . . , F, . . . , f

(k−1)
k

∣∣∣∣∣∣∣∣∣ = F · gi (i = 1, . . . , k) ,

wheregi are differential polynomials inf1, f2, . . . , fk with constant coefficients. So

(3.4) σ2 (gi) ≤ σ2 (fj) = σ (A0) , B
′

i =
Wi

W
=

F · gi

W
(i = 1, . . . , k)

and

(3.5) σ2 (Bi) = σ2

(
B

′

i

)
≤ max (σ2 (F ) , σ (A0)) = σ (A0) (i = 1, . . . , k) ,

becauseσ2 (F ) = 0 (σ (F ) < +∞) . Then from (3.1) and (3.5), we get

(3.6) σ2 (f) ≤ max (σ2 (fj) , σ2 (Bi)) = σ (A0) .

Now from (1.8), it follows that

(3.7) |A0 (z)| ≤
∣∣∣∣f (k)

f

∣∣∣∣ + |Ak−1 (z)|
∣∣∣∣f (k−1)

f

∣∣∣∣ + · · ·+ |A1 (z)|
∣∣∣∣f ′

f

∣∣∣∣ +

∣∣∣∣Ff
∣∣∣∣ .

Then by Lemma 2.2, there exists a setE1 ⊂ [0, +∞) with a finite linear measure such that for
all z satisfying|z| = r /∈ E1, we have

(3.8)

∣∣∣∣f (j) (z)

f (z)

∣∣∣∣ ≤ r [T (2r, f)]k+1 (j = 1, . . . , k) .

Also, by the hypothesis of Theorem 1.1, there exists a setE2 with dens {|z| : z ∈ E2} > 0
such that for allz satisfying z ∈ E2, we have

(3.9) |Aj (z)| ≤ exp
(
β |z|σ−ε) ( j = 1, . . . , k − 1)

and

(3.10) |A0 (z)| ≥ exp
(
α |z|σ−ε)

asz →∞. Sinceσ (f) = +∞, then for a given arbitrary largeρ > σ (F ) ,

(3.11) M (r, f) ≥ exp (rρ)

holds for sufficiently larger. On the other hand, for a givenε with 0 < ε < ρ−σ (F ), we have

(3.12) |F (z)| ≤ exp
(
rσ(F )+ε

)
,

∣∣∣∣F (z)

f (z)

∣∣∣∣ ≤ exp
(
rσ(F )+ε − rρ

)
→ 0 (r → +∞) ,

where|f (z)| = M (r, f) and|z| = r. Hence from (3.7) – (3.10) and (3.12), it follows that for
all z satisfying z ∈ E2, |z| = r /∈ E1 and|f (z)| = M (r, f)

(3.13) exp
(
α |z|σ−ε) ≤ |z| [T (2 |z| , f)]k+1 [

1 + (k − 1) exp
(
β |z|σ−ε)] + o (1)
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asz →∞. Thus there exists a setE ⊂ [0, +∞) with a positive upper density such that

(3.14) exp
(
αrσ−ε

)
≤ dr exp

(
βrσ−ε

)
[T (2r, f)]k+1

asr → +∞ in E, whered (> 0) is some constant. Therefore

(3.15) σ2 (f) = lim
r→+∞

log log T (r, f)

log r
≥ σ − ε.

Sinceε is arbitrary, then by (3.15) we getσ2 (f) ≥ σ (A0) = σ. This and the fact thatσ2 (f) ≤ σ
yield σ2 (f) = σ (A0) = σ.

By (1.8), it is easy to see that iff has a zero atz0 of orderα (> k), thenF must have a zero
at z0 of orderα− k. Hence,

(3.16) n

(
r,

1

f

)
≤ k n

(
r,

1

f

)
+ n

(
r,

1

F

)
and

(3.17) N

(
r,

1

f

)
≤ k N

(
r,

1

f

)
+ N

(
r,

1

F

)
.

Now (1.8) can be rewritten as

(3.18)
1

f
=

1

F

(
f (k)

f
+ Ak−1

f (k−1)

f
+ · · ·+ A1

f
′

f
+ A0

)
.

By (3.18), we have

(3.19) m

(
r,

1

f

)
≤

k∑
j=1

m

(
r,

f (j)

f

)
+

k∑
j=1

m (r, Ak−j) + m

(
r,

1

F

)
+ O (1) .

By (3.17) and (3.19), we get for|z| = r outside a setE3 of finite linear measure,

T (r, f) = T

(
r,

1

f

)
+ O (1)(3.20)

≤ kN

(
r,

1

f

)
+

k∑
j=1

T (r, Ak−j) + T (r, F ) + O (log (rT (r, f))) .

For sufficiently larger, we have

(3.21) O (log r + log T (r, f)) ≤ 1

2
T (r, f)

(3.22) T (r, A0) + · · ·+ T (r, Ak−1) ≤ k rσ+ε

(3.23) T (r, F ) ≤ rσ(F )+ε.

Thus, by (3.20) – (3.23), we have

(3.24) T (r, f) ≤ 2k N

(
r,

1

f

)
+ 2k rσ+ε + 2rσ(F )+ε (|z| = r /∈ E3) .

Hence for anyf with σ2 (f) = σ, by (3.24), we haveσ2 (f) ≤ λ2 (f). Therefore, λ2 (f) =
σ2 (f) = σ.
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4. PROOF OF THEOREM 1.2

Assume thatf (z) is an entire solution of (1.8). For case (i), we assumeσ (A1) > 0 (when
σ (A1) = 0, Theorem 1.2 clearly holds). By (1.8) we get

A1 =
F

f ′ −
f (k)

f ′ − Ak−1
f (k−1)

f ′ − · · · − A2
f
′′

f ′ − A0
f

f ′(4.1)

=
F

f

f

f ′ −
f (k)

f ′ − Ak−1
f (k−1)

f ′ − · · · − A2
f
′′

f ′ − A0
f

f ′ .

By Lemma 2.3, we see that there exists a setE4 ⊂ (1, +∞) with finite logarithmic measure
such that for allz satisfying |z| = r /∈ [0, 1] ∪ E4, we have

(4.2)

∣∣∣∣f (j) (z)

f ′ (z)

∣∣∣∣ ≤ Br [T (2r, f)]k (j = 2, . . . , k) .

Now setb = max {σ (Aj) : j = 0, 2, . . . , k − 1; σ (F )} , and we choose real numbersα, β
such that

(4.3) b < α < β < σ (A1) .

Then for sufficiently larger, we have

(4.4) |Aj (z)| ≤ exp (rα) (j = 0, 2, . . . , k − 1) ,

(4.5) |F (z)| ≤ exp (rα) .

By Lemma 2.6 (ifµ (A1) = σ (A1)) or Lemma 2.7 (ifµ (A1) < σ (A1)) there exists a subset
E5 ⊂ (1, +∞) with logarithmic measurelm (E5) = ∞ such that for allz satisfying|z| = r ∈
E5, we have

(4.6) |A1 (z)| > exp
(
rβ

)
.

SinceM (r, f) > 1 for sufficiently larger, we have by (4.5)

(4.7)
|F (z)|

M (r, f)
≤ exp (rα) .

On the other hand, by Lemma 2.5, there exists a setE6 ⊂ (1, +∞) of finite logarithmic measure
such that (2.7) holds for some pointz satisfying|z| = r /∈ [0, 1] ∪ E6 and|f (z)| = M (r, f) .
By (2.7), we get ∣∣∣∣f ′

(z)

f (z)

∣∣∣∣ ≥ 1

2

∣∣∣∣νf (r)

z

∣∣∣∣ >
1

2r
or

(4.8)

∣∣∣∣ f (z)

f ′ (z)

∣∣∣∣ < 2r.

Now by (4.1), (4.2), (4.4), and (4.6) – (4.8), we get

exp
(
rβ

)
≤ Lr [T (2r, f)]k 2 exp (rα) 2r

for |z| = r ∈ E5\ ([0, 1] ∪ E4 ∪ E6) and|f (z)| = M (r, f) , whereL (> 0) is some constant.
From this and sinceβ is arbitrary, we getσ (f) = +∞ andσ2 (f) ≥ σ (A1) .

On the other hand, for any givenε > 0, if r is sufficiently large, we have

(4.9) |Aj (z)| ≤ exp
(
rσ(A1)+ε

)
(j = 0, 1, . . . , k − 1) ,
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(4.10) |F (z)| ≤ exp
(
rσ(A1)+ε

)
.

SinceM (r, f) > 1 for sufficiently larger, we have by (4.10)

(4.11)
|F (z)|

M (r, f)
≤ exp

(
rσ(A1)+ε

)
.

Substituting (2.7), (4.9) and (4.11) into (1.8), we obtain

(4.12)

(
νf (r)

|z|

)k

|1 + o (1)| ≤ exp
(
rσ(A1)+ε

) (
νf (r)

|z|

)k−1

|1 + o (1)|

+ exp
(
rσ(A1)+ε

) (
νf (r)

|z|

)k−2

|1 + o (1)|+ · · ·

+ exp
(
rσ(A1)+ε

) (
νf (r)

|z|

)
|1 + o (1)|+ 2 exp

(
rσ(A1)+ε

)
,

wherez satisfies|z| = r /∈ [0, 1] ∪ E6 and|f (z)| = M (r, f). By (4.12), we get

(4.13) lim
r→+∞

log log νf (r)

log r
≤ σ (A1) + ε.

Sinceε is arbitrary, by (4.13) and Lemma 2.4 we haveσ2 (f) ≤ σ (A1). This and the fact that
σ2 (f) ≥ σ (A1) yield σ2 (f) = σ (A1).

By a similar argument to that used in the proof of Theorem 1.1, we can getλ2 (f) = σ2 (f) =
σ (A1) .

Finally, case (ii) can also be obtained by using Lemma 2.8 and an argument similar to that in
the proof of Theorem 1.1.
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