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ABSTRACT. In the present paper we give the rate of convergence for the linear combinations
of the generalized Durrmeyer type operators which includes the well known Szasz-Durrmeyer
operators and Baskakov-Durrmeyer operators as special cases.
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1. INTRODUCTION

Durrmeyer|[[1] introduced the integral modification of Bernstein polynomials so as to approx-
imate Lebesgue integrable functions on the intefval]. We now consider the general family
of Durrmeyer type operators, which is defined by
(11) Sn(f(t)a I) = (n - C) an,v (1‘) / P (t) f (t) dt7 YIS I

v=0 0
wheren € N, n > max {0, —c} andp,, (z) = (-1)" %90;”) (). Also {¢,} is a sequence
of real functions having the following properties @ha|, wherea > 0 and for alln € N,
v € NU {0}, we have
() ¢n € C*[0,4d], ¢, (0) = 1.
(1) ¢, is complete monotonic.
(Il) There existc € N : ¢! = —n@ﬂc, n > max {0, —c}.
Some special cases of the operatprs|(1.1) are as follows:
(1) If ¢ = 0,0, (x) = e, we get the Szasz-Durrmeyer operator.
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2 fe=1,¢,(x)=(1+ x)_" we obtain the Baskakov-Durrmeyer operator.

(3) Ifc>1,¢,(x) = (1 +cx) <, we obtain a general Baskakov-Durrmeyer operator.
4) Ifc=—-1,¢, () = (1 —x)", we obtain the Bernstein-Durrmeyer operator.

Very recently Srivastava and Gupta [9] studied a similar type of operators and obtained the
rate of convergence for functions of bounded variation. It is easily verified that the operators
(1.1) are linear positive operators and these operators reproduce the constant ones, while the
operators studied in [9] reproduce every linear functional for the cas8. Several researchers
studied different approximation properties on the special cases of the opérafors (1.1), the pioneer
work on Durrmeyer type operators is due to S. Guo [3], Vijay Gupta (see e. gl [4], [5]), R. P.
Sinha et al. [[8] and Wang and Guo [11], etc. It turns out that the order of approximation for
such type of Durrmeyer operators is at b@gt» '), how so ever smooth the function may be.

In order to improve the order of approximation, we have to slacken the positivity condition of
the operators, for this we consider the linear combinations of the opefaigrs (1.1). The technique
of linear combinations is described as follows:
—1

1 dy' dy? o dy* Saon(fyx) dyt dy? ... dy*

1 dyt di? o d* San(fox) di' di? ... d*
Sn,k(f7 ZL“) = ... .. e e .. .. e e ..

1 4! d? ... " San(frx) d;t d? ... "

Such types of linear combinations were first considered by May [7] to improve the order of
approximation of exponential type operators. In the alternative form the above linear combina-
tions can be defined as

M;r

nk f ‘T = C den f ‘T)
7=0

where

k
d;
= k#0 and C(0,0) = 1.
i#]
If f € LP[O,OO), 1<p< oo andl < a; < az < ag < by < by < by < ooandll- = [ai,bi},
i = 1,2, 3, the Steklov meatf, .., of m'" order corresponding tg is defined as

fun®) =7 [ [ () 1A 10 )Ilﬁ“ te .
It can be verified [6, 10] that

(i) f,m has derivative up to orden, féf;;‘” € AC(L) andféf?) exist almost every where
and belongs td.,(I;);

) | fin], <o (e )r =123, m

(iii) Hf fanLp ) < KQWm(f n, D, [1>;
(IV) H mHL o(I2) = K377 “fHLp I)

(V) H (m) < Kun~"we(f,n,p, 1)

Lp(I1)
whereK!s, i = 1,2, 3,4 are certain constants independeny @nd.

In the present paper we establish the rate of convergence for the combinations of the gener-
alized Durrmeyer type operators in,—norm.
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2. AUXILIARY RESULTS
To prove the rate of convergence we need the following lemmas:

Lemma 2.1. Letm € N U {0}, alsopu,, ,,(x) is them™ order central moment defined by

P = Sp((t —x)™, 2) = (n—¢) anm(x) /000 Pnw(t)(t —x)™dt,

then

(i) ftnm(x) is a polynomial inz of degreem.
(ii) ftn,m(z) is arational functionim and foreach) < z < 0o iy m(z) = O (=M

Remark 2.2. Using Holder’s inequality, it can be easily verified tsa( |t — 2|, z) = O(n™"/?)
for eachr > 0 and for every fixed < z < oo.

Lemma 2.3. For sufficiently largen andq € N, there holds
S ((t =)0 2) = n~ " {F(g, k, x) + o(1)},
whereF(q, k, x) are certain polynomials in: of degree; and0 < = < oo is arbitrary but fixed.

Proof. For sufficiently large values of we can write, from Lemma 2.1

Qo() Qi (x) Qa2 ()

nllatD)/2] — pllg+1)/21+1

Sp((t—2) x) =

- +oet

whereQ;(z),i =0, 1,2, ... are certain polynomials im of at most degree.
ThereforeS,, . ((t — z)?, x) is given by

_ Qo(x Q1 (x 1 5 L
1 dal da2 ----- dak 1 (don)(zl(lﬁ-)l)/Q] —'I_ (don) (;_(;'_12/2 1 _I_ do do ..... do
n - — T T _ _ _k
1 dl ' dl S, dl g (dlnc)?(3§+)1>/zl + (dlnﬁ;ig/z 1 + ... dl ! dl 2 dl
1 d—l d—2 .... d—k ----- Qo(x)Ql(x) .d.il .6572 ,,,,, _Céik
k k k (dpn)la+1)/2] + (dn)l(a+D72+1 + ... k L e k
— p—(k+1) {F(q,k,z)+0(1)}, 0<az<oo.

Lemma 2.4([4]). Letl < p < oo, f € L, [a,b], f™ € AC [a,b] and f™*D € L, [a,b], then
1N e < € {10+ Wy}

j=1,2,3,...,mandC'is a constant depending (;y'r,lp, m,a,b.

Lemma 2.5.Let f € L,[0,00), p > 1. If f&+D ¢ AC(I,) and f+2) ¢ [, (I,), then for all
n sufficiently large

@1) 1Skl = Pl < OS2+ 10 -

Also if f € L1[0,00), f*+V ¢ Li(I,) with f%% ¢ AC(I,) and 1 € BV(I,), then for
all n sufficiently large

(2:2) 104 (f,) = Fll, 1,y < Con™ Y {Hf(%H)HBvul) 1INy + ”f”Ll[o,oo)}'
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Proof. First letp > 1. By the hypothesis, for all € [0, 00) andx € I, we have

f

2k+1

nk(f7 Z

k((t— )", x)

* msn,k(éﬁ(t) / (t — w)* F2) () dw, z)

+ Sk (F(42)(1 = (1)), 2)
== El + E2 + E3a Say!
where¢(t) denotes the characteristic functionlgfand

2k+

Fltoa) = 1)~ 3 =2 0 ),
1=0
Applying Lemmg 2.8 and Lemnija 2.4, we have

2k+1

1B, < Con™ DY £, ) < Can™OFD {Hf I r) + Hf”’““WILp(m} :
=1

Next we estimate?,. Let H; be the Hardy Littlewood maximal function [10] ¢#*+2 on I,
using Holder’s inequality and Lemma 2.1, we have

|Es| < (2ki—2 ( / [t — | ‘f(2k+2)(w)|dw ,:c)
< m&m (qb(t) |t — x‘2k+1 / |f(2k+2) (w)‘dw 71,)
1
< msn,k (¢(t) ‘t — .1'|2k+2 ’Hf(t)‘ ,x)
1

< Gz LSk (001 = a2, o)V {8 (600 [ H, ) )}

k b1 9]
< Cxp~ (kD) (Z C(j, k) / (djn — c) Zpdjnyv(x)pdjnm(t) |H (1) dt)
j:O v=0

al

3 =

Next applying Fubini’s theorem, we have

1E217, 1)

k b b1 00
< CgnPk+1) Z C(j,k) / / (djn —c) Zpdjn,v(x)pdjn’v(t) \H (1) |” dtda
=0 az Jai v=0

k b1 b 0o
< COgnPU+D Z C(j,k) / (/ (djn —c) Zpdjnyv(x)pdjnw(t)dx> |H ()| dt
=0 @

a2 v=0

B _ P
< Oy PEHD ||Hf||ip(11) < Cgn PU+D ||f(2k+2)HLp(h) .

Therefore

12|l 15 < Con™ S0 [ fER42]
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Fort € [0,00)\[a1, b1], x € I, there exists @ > 0 such thatt — z| > §. Thus

k
< 6N C(G, k) Sayn (It 2)] (= 7)™, )
=0

<5%“§ym,[&dmﬂ(:ﬁmw)

7=0
Sd N <‘ _ x|2k+2+i ,x)]

2k+1
Applying Holder’s inequality and Lemma 2.1, we have

+Z

= E31 + E32, say.

1

k =
[Baa| < 573 SO0, k) {SunllFOF 2)} { Syt =2+ )}

J=0

<Y CUM (SuFOF DY (s

Finally by Fubini’s theorem, we obtain

b
|mﬂam=/|&mm

az

3=

<@ZC% mlwﬁ//" — )P (0)Pan1) |0 b

<owwﬂwm%m.

Again by Lemma 24, we have

—(k+1 2k+2
1Bs2ll 1,y < Cuan™ S L1 ) + 1172 gy
Thus
— (k41 2k+2
13011y 1y < Coon™ 0 L7y + 172}

Combining the estimates @), E,, E5, we get[(2.11).
Next suppose = 1. By the hypothesis, for almost all€ I, and for allt € [0, ), we have

2k+1f
+—;L—squfu—wWﬂﬂ%ﬂWMwm
(2k+ 1) . ’

= My + My + M3, say,

where)(t) denotes the characteristic functionlgfand

) = f5) - S U= o)

7!
i=0
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for almost allz € I, andt € [0, 00).
Applying Lemmg 2.8 and Lemnja 2.4, we have

184115, < Cum™ & L1l + 152 i -

Next, we have

1Mzl 1, 1,
1 b2 bl 2k+1
< (2k+ ) ja ‘ n—c Zpdnv pdnv(t)‘t_ ‘

|df(2k+1)(w) | ‘ dtdz.

For eachi;n there exists a non negative integet r(d;n) satisfying
7’(0ljn)_1/2 < max(by —ag, by —ay) < (r+ 1)(djn)_1/2.
Thus

)—1/2

1 b +(1+1)(
M. < — O(din —
H 2HL1(I2) — (2k+ 1) j? ’Z/ {/x+(l)(d7n 12 ¢< )( 3T C)
> o4 (I41)(dyn) "1/
.Zpdjn,v@)pdjn,v(t) it — g / o(w) | dF P+ (w)| | dede
v=0 T

—1/2

1 b2 z—(1)(d;n)
MRS (2k: + 1) C@, k)l Z/ {/ 172 o(t)(djn — c)
- o2k | * i)
X ;pdjn,v<x>pdjn,v(t> It — } (/x—(l-‘rl)(djn)l/Q o(w) |df (w)|> dtd.

Suppose ¢,..s(w) denotes the characteristic function of the interjal — c(d;n)~"/2,
x + s(d;n)~'/?], wherec, s are nonnegative integers. Then we have

1 b (14+1)(djn)~1/2
HMQ”Ll(IQ) S STy 2k + ) C(j,k ‘Z/ {/ o(t)(d;n)?(dn — c)

(d n —-1/2

X Zpdjn,v (x)pdjmv (t)l_4 |t - x|2k+5}

v=0

o+ (14+1)(djn) /2
y / B(w)da0a11 () |[dF D (w)| | dede
—~1/2

1 b2 z—(1)(d;m) 2
(2k+1) ¢l k !Z / { / 172 o(t)(d;n)2(d;n — c).
X Z bdjn,v(x)pdjn’v@)l% |t o x|2k+5}

v=0
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X (/ (W) P i11,0(w) ‘df@kﬂ)(w)’) dtdzx
—(H—l)(d'n)*l/Q
1 bo a1+(djn)~ 1/2
< i o 16 RI {/ L -0

2%k+1
X Zpdjnvv(x)pdjn,’l)(t> |t — z * }
v=0

:v-l—(djn)’l/2
X ( / D(w) 11 (w) }df<2k+1>(w)\) dtdx

z—(d;n)—1/2

ac—i-(l—i-l)(djn)’l/2

1 k ‘ r L bo
<G e | {/( o(0)(dyn — )

a+(1)(dyn)=1/2

X Zpdjn,v (x)pdjn,v <t> |t - x|2k+5}
v=0

b1
X ( G011 (W) }df@’f“)(w)\) dtdzx

1

: Z ¥ T om0
(Qk + 1)! z+(14+1)(djn)~1/2 ’
X Zpdjn,v (x)pdjn,v () It — $|2k+5}
v=0

b1
x ( ¢xJ+Louy)}df@k+”(uo\) dtda

1

b2 a1+(djn)~1/?
e Z|C il [ / IR CICEE
X Zpdjn,v (I)pdjnﬂ) <t> |t - x|2k+1}
v=0

b1
x( ¢WWMMMMW“WMDﬁM.

Applying Lemmd 2.]L and using Fubini’s theorem we get

HM2||L1(12)

k r ba
< cu X ctplan ey ]
7=0 =1 a2z Ja1
k r b b1
+Cha Y |C(, k)| (dym)~GEFD/2 Y " / { / Gogrr0(w) [df P (w)] dz
j=0 =1 az

b1

Gr011 (w) ‘df(2k+1) (w) ’ dx}

al

b1
+ P11 (W) |df(2k+1)(w)‘ dzv}

al
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bo

¢x,0,l+1(w)dl’) |df ) (w)| }

2

k i )
< Cu Y _|C( k)|(dm)~CRFD2Y {/ (
0 =1 ay a
k ) . .
o Z G Bldin) " Z o / { P 41,0( ‘df(Qk—&-l (w)| dz
j=0 - .

a2z

ba
+ G0 (w) |df D (w)] d:c}

a2

k r w
< Cis ) _1CG R (dm) =02y 17 { / ( / das) ldf@"““)(w)l}
=1 (1+1)(djn)—1/2

=0 w=

k r by w+(1+1)(djn) /2
S ICG I @S [ do ) a0 w)
j=0 =1 a

by wA(djn)~1/2
+ / / dx | |df* ) (w)]
ai w—(d;n)~1/2
—(k+1 2k+1
< Crgn~ "+ Hf( )HB.V.(II)'
Finally we estimatd/;. Itis sufficient to choose the expression without the linear combinations.
For allt € [0,00)\[a1,b,] and allz € I, we choose & > 0 such thatt — x| > ¢. Thus

[Sn(F (8 ) (1 = o)), @)l 1, (1,

(F'(
= / 2/00 <”_C)an,v(fv)pn,v(t)\f(t)l(l—gzs(t))dtda;
2k+1 b
Z'/ / n—Canv 2)Pno(t |f | It —2|" (1 — ¢(t))dtdz

= M4 + Ms, say

For sufficiently larget there exist positive constants;, Cs such that%—zﬂ > (', for all
t > Cis, t € I,. Applying Fubini’s theorem and Lemma .1, we obtain

M= ( [ /+ [ / ) S (1 — () 0) T O] (1 — (1))t
< Crgn~(*+D) (/OC £ |dt> Cn/cm/az :Oopm pm(t)%]f(mdmdt

Cao
< a0 {( [ shar) + (| 1701at) b < Canc D g

Finally by the Lemma 2]4, we have

Ms < Com™ 0 L1l gy + 150 )

CombiningM,4 and M5, we obtain

My < Cogn~*) {||f||L1[0,oo) + Hf(2k+1)||L1(12)} ‘

This completes the proof df (2.2) of the lemma. O
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3. RATE OF CONVERGENCE

Theorem 3.1.Let f € L,[0,00),p > 1. Then forn sufficiently large

1Sukf2) = Fllpyiy < Cas {wmsalfsn ™20, 1) + 0~ VN o
where(Cy, is a constant independent gfandn.
Proof. We can write
HSn,k(fa *) - fHLpUQ) < HSn,k(f - fn,2k+2> *)HLP(IQ)

+ 19w (fozeiz, %) = fozrs2) |l ) + [[(Fn2ee2 = £l
=F + FEs+ Eg, say.

} BV.(I3) ‘
Therefore from Lemmia 2.& > 1) and(p = 1) we have

Lp(I2)

It is well known that

f(2k+1)

(2k+2)
n,2k+2 f,

n,2k—+2

L1 (I3)

f(2k+2)
1,2k+2

Ey < Chzn~*+D) (‘

o Wl )

< CQﬁn_(k+1) (n_(k+2)w2k+2(f,777p, )+ HfHLp[O,oo)) )

which follows from the properties of Steklov means.
Let ¢(t) be the characteristic function f, we have

Su((f = fn,2k+2)(t)a z) = Su(p(t)(f — fn,2k+2)(t)a )+ Sp((1 = o(t))(f — fn,2k+2)(t)’ z)
=FE,+ Ej5, say.

By Hdlder’s inequality

b b2 pb1 oo
/ | Byl de < / / (n =)D (@) |(f = fronc2) ()] dtdz.

Applying Fubini’s theorem, we have

ba
/ B < |1f = faoesally -

a2

Similarly, forallp > 1

15, < Comn™ ™ VN f = fransall pooc -

Lp(I3) —

Consequently, via the property of Steklov means, we find that

1S (f = f1,2k +2,)[| 1oy < Cos {w2k+2 (f,mp, L) +n~*Y ||f||Lp[o,oo)} :
Hence

E, < Cy {w2k+2 (f.mp, L)+~ *Y HfHLp[o,oo)} :

Thus, with = n='/2, the result follows.
This completes the proof of the theorem.
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