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1. Introduction

Let f be a continuous angir-periodic function and let
(1.1) f(x)~ % + ; (a, cosnx + by, sinnx)

be its Fourier series. Denote By, (x) = S, (f, z) then-th partial sum of {.1) and
by w (f, d) the modulus of continuity of € Cy;.

The usual supremum norm will be denoted|by,. .

Let w (t) be a nondecreasing continuous function on the intgfva&lr] having
the properties
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w(0) =0, w(d+06)<w(d)+w(d). Title Page
Such a function will be called a modulus of continuity. Contents
Denote byH* the class of functions pp »
H :={f € Co; [f(z+h)—f(z) < Cw(lh])}, < >
whereC' is a positive constant. Fof ¢ H*, we define the nornfj-||, = ||-|| ;.. by Page 3 of 27
the formula ——
1l = 11flle+ 1 fllew
Full Screen
where £ (0= £ Ol
I#lle,. = sup —Lle, Close
h#£0 w (| |) : . "
o . . journal of inequalities
and |]f||a0 =0. fw() = C1t|" (0<a<1), whereC] is a positive constant, in pure and applied
then mathematics
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is a Banach space and the metric induced by the ripfimon H* is said to be a

Holder metric.
Let A := (an) (k,n=0,1,...) be a lower triangular infinite matrix of real

numbers satisfying the following condition:

12)  aw>0(kn=01..), ax=0, k>n and > ay=L

k=0
Let the A—transformation of S,, (f;x)) be given by
k=0

x)) forr > 0 by

T, (f,r):=T,(f,rx) ::{Za”klsk fix) — ()|}’" (n=0,1,...).

Now we define two classes of sequencé$) ([
A sequence := (c¢,) of nonnegative numbers tending to zero is called the Rest
Bounded Variation Sequence, or brieflg RBV' S, if it has the property

and the strong\, —transformation of S, ( f;

(14) Z ’Cn - anrl‘ S K (C> Cm
sz

for all natural numbers:, whereK (c) is a constant depending only en
A sequence: := (c,) of nonnegative numbers will be called a Head Bounded
Variation Sequence, or brieftyc HBV' S, if it has the property
m—1
(1.5) Z lcn — Cng1| < K (¢) e

k=0
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for all natural numbersn, or only for allm < N if the sequence has only finite
nonzero terms and the last nonzero ternnis

Therefore we assume that the sequeii¢én,)) -, is bounded, that is, that there
exists a constank’ such that

0< K (an) < K

holds for alln, where K («,,) denote the sequence of constants appearing in the

o0

inequalities {.4) or (1.5) for the sequence,, := (a.x);—,- Now we can give the
conditions to be used later on. We assume that fat athd0 < m < n,

(16) Z |0Jnk - ank+1| S Kanm
k=m

and
m—1

(17) ’ank - ankJrl‘ S Kanm

>
I

0

hold if av,, := (ank);., belongs taRBV'S or HBV S, respectively.

Let w () andw* (t) be two given moduli of continuity satisfying the following
condition (for0 < p < ¢ < 1):
w8 (w (1)’
w* (1)

=0(1) (t—04).
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with a mediate functiord{ such that:

t
(1.9) / (f )dt O(H(w) (u—0y), H({t)>0
and

t
(1.10) / Hwdu=0@H®#) (t—0.).

0 Rate of Strong Summability
Theorem 1.1.Let A = (a,;) satisfy the condition1(2) anda,; < a,i41 for k = by Matrix Means
0,1,...,n—1,andn=0,1,.... Thenforf € H*,0<p<q<1, Bogdan Szal
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(1) [itn (F) = fll = O [{eo (J2 = )} {w (J2 — )}

P

<A (E)) (0 0 ) | 40 (wmntr (),

Contents
if w(f;t) satisfies {.9) and (L.10), and

<« >
(112) fitu (f) = fll.- = O [{e (lx =y} {w (o =y} ] «
E 1—5 § Z 1_5 Z E Page 6 of 27
() ot (1 (2)) 0o (3) ot (D) s
O bac
if w(f;t) satisfies {.9), wherew* (¢) is the given modulus of continuity.
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wherew* (t) is the given modulus of continuity.

The next generalization of another result of P. Chandfavps obtained by L.
Leindler in [3]. Namely, he proved the following two theorems

Theorem 1.3. Let (1.2) and (L.9) hold. Then forf € Cs,

1o =0 (s (£)) +0 ot (2))

If, in additionw (f;t) satisfies the conditior(10), then

(1.15) ltn () = fllc = O (ann H (ann)) .
Theorem 1.4.Let (1.2), (1.9 and (L.10 hold. Then forf € Cs,
(1.16) 1tn (F) = Flle = O (anoH (ano)) -

In the present paper we will generalize (and improve) the mentioned results of T.
Singh B] to strong summability with a mediate functidh defined by the following
conditions:

(1.14)

(1.17) / (f zf)dt O(H (r;u)) (u—0y), H(t)>0andr >0,
and

(1.18) /t H(u)du= O (tH (r;t)) (t— O4).

We also apply a generalization of Leindler’s ty3 [
Throughout the paper we shall use the following notation:

G (t) = flz+t)+ [z —1)—2f (2).
By K, Ks, ... we shall designate either an absolute constant or a constant depending
on the indicated parameters, not necessarily the same at each occurrence.
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2. Main Results

Our main results are the following.

Theorem 2.1. Let (1.2), (1.7) and (L.8) hold. Suppose (f;t) satisfies {.17) for
r > 1. Thenforf € H¥,

@) Tu(f;)le =0 ({14102 (0 + 1) aun)} ¥
1i_p Bogdan Szal
X {((n + 1) ann)ril annH <T; %) } T( q)) . vol. 9, iss. 1, art. 28, 2008
If, in additionw (f;t) satisfies the conditiorL(19, then )
Title Page
(22) T (f.)llo = O ({14 (2 (0 + 1) an)} Contents
1(1_p 44 44
X {(hl (2(n+1) am))r_1 A H (15 am)}r(1 ‘1)) )
< »
Theorem 2.2.Under the assumptions of above theorem, if there exists a real number Page 8 of 27
s > 1 such that the inequality
Go Back
— ' 1y 23R Full S
(23) Z (ani)s S Kl (2]6,1);71 Z (i ull Screen
i=2k—1 i=2k-1 Close
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and

%) T ()l = O ({amedt 10,y 00
are true.

Theorem 2.3.Let (1.2), (1.6), (1.89) and (L.17) for » > 1 hold. Then forf € H*
(2.6) IT, (£, = O ({amH (r g>}r(1—q)> |

If, in addition,w ( f;t) satisfies (.19, then

(2.7) 1T (£ ) le = O ({anoH (rsan)}9))

Remarkl. We can observe, that for the case= 1 under the condition1(.8) the

first part of Theorem..1 (1.11) and Theoreni..2 are the corollaries of the first part

of Theorem2.1 (2.1) and the second part of TheorenB (2.7), respectively. We

can also note that the mentioned estimates are better in order than the analogical
estimates from the results of T. Singh, sifa€2 (n + 1) a,,,) in Theorem2.1 is

better thann + 1) a,,,, in Theorem1.1. Consequently, if.a,,, is hot bounded our
estimate £.7) in Theorem2.3is better than1.13 from Theoreml.2.

Remark2. If in the assumptions of Theorefh1 or 2.3 we takew (|t|) = O (|¢]|?),
w* (|t]) = O (J¢[") with p = 0, then from ¢.1), (2.2) and @.7) we have the same
estimates such as (14, (1.15 and (L.16), respectively, but for the strong approxi-
mation (withr = 1).
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3. Corollaries

In this section we present some special cases of our results. From Theobfieins
and2.3, puttingw* (|t|) = O <|t|’6>, w ([t]) = O (J¢]Y),

el if ar < 1,

. Rate of Strong Summability
. _ us —
H (7“, t) — In T If ar = 1a by Matrix Means

. Bogdan Szal
K, ifar>1 g
vol. 9, iss. 1, art. 28, 2008

wherer > 0 and0 < a < 1, and replacingy by g andq by «, we can derive
Corollaries3.1, 3.2and3.3, respectively.

Title P
Corollary 3.1. Under the conditionsl(2) and (L.7) we have forf € H*, 0 < (§ < U
a<landr >1, Contents
(O ({m (2 (1 + 1) an)} 7 (175) {ann}a—ﬂ) if ar < 1, “ >
s o B < »
TTL 7 = +Oj— { (L> } i =
1T (f, )l g O ({1H (2(n+1)an)} In {2 ) ann if ar =1, Page 10 of 27
| 0 ({m (2(1n 4 1) @) Y7 (175) {a,m}“a‘f> if ar > 1. Go Back
Corollary 3.2. Under the assumptions of Corollagyl and (.3) we have Full Screen
(0 ({ann}a_ﬁ> if ar <1, Close
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Corollary 3.3. Under the conditionsl(2) and (L.6) we have, forf € H*, 0 < § <
a<landr>1,

e, <{an0}a_'g) if ar <1,
T, (f,r)lls =14 O ({ln (Jﬁ) ano}a_ﬂ> if ar =1,
| O <{an0}af:’“ﬁ) if ar > 1.
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4. Lemmas

To prove our theorems we need the following lemmas.

Lemma4.1.1f (1.17) and (L.19 hold withr > 0 then

4.1) /0 e g;t)dt — O(sH (r;5)) (s —0,).
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=0 (sH (r;s))+ O (1)/0 H (r;t)dt Contents
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Lemma 4.2 ([7]). If (1.2), (1.7) hold, then forf € C5, andr > 0, Page 12 of 27
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(2] 1 Full Screen
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If, in addition, (2.3) holds, then

2

(4.3) 1T (fr)lle <O | S D ananEi (f)
k=0

22 T

Lemma 4.3 ([7]). If (1.2), (1.6) hold, then forf € Cy, andr > 0,

1

(4.4) 1T (f,7)lle <O {ZankEz (f)}
k=0
Lemma4.4.1f (1.2), (1.7) hold andw (f;t) satisfies {.17) with » > 0 then
2 i i
(4.5) g A 4" (f, o 1> =0 (amH (r; ﬁ)) )
If, in addition,w (f;t) satisfies {.19 then
2 W
(4.6) > anis (1) = Ottt ().
Proof. First we prove 4.5). If (1.7) holds then
Unp — . < |y — | < mz:l lank — @nps1| < Kapm
k=p
foranym > p > 0, whence we have
4.7) Ay < (K + 1) @
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From this and usingl(17) we get

(%] n
T . 7[— I8 . 7T
kz:; A 4k W (f:m) < (K—'_l)ann;w (fa k?—H)

n+1 T
r .o
< Klann/ w <fﬂ t> dt Rate of Strong Summability
1 .
T r (f U) by Matrix Means
= 7K ayy, / w—z’du Bogdan Szal
P u vol. 9, iss. 1, art. 28, 2008
T
-0 ()
" Title Page
Now we prove {.6). Since
Contents
n
(K+1)(n+1)annzzank:1, «“ >
k=0 < >

we can see that Page 14 of 27

(2] - Erenrmik - Go Back
4.8 aparw’ | f; < anapw’” | f;
(4.8) kZ:O Ak (f k + 1> kZ:o Ak (f k+ 1) Full Screen
- N ™ Close
+ Z Qp 4fW (f7 L + 1> . . »
k:[m]—l journal of inequalities
- in pure and applied
=21t 2. mathematics
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estimate the quantities; and>:, as follows

[sr |-
(4.9) S < (K4 D Y, W <f

k=0

1
A(K+T)ann
éKzann/ B (f; Z) dt
. ¢
4

2
7(K+1)ann U

§7TK2am/ Lj;u)du

ann u

and

(4.10) So < K" (fid4m (K + 1) an) Y

b=
< K3 (87 (K + 1)) " (f; Gnn)
< K3 (327 (K +1))"w" (f; a%)

< 2K, (327 (K + 1)) / mretih g

ann t
2

0 t

;k:+1>

1
4<K+1)ann ] -1

Qp 4k

If (1.17) and (L.19 hold then from ¢.6) — (4.10 we obtain {.6). This completes

the proof.

]
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Lemma 4.5.1f (1.2), (1.7) hold andw (f; t) satisfies {.17) with» > 1 then

(4.11) w (f, #ﬂ) In (2 (n + 1) any)

-0 ({(n 1) a7 {annH (r; g) }) .

If, in addition,w (f; t) satisfies {.19 then

4.12) w (f, n——|—1> In(2(n+1)an)

=0 ({ln (2(n+1) ann)}k% {aw H (1 ann)}%> .

Proof. Letr = 1. Using the monotonicity of the modulus of continuity

w <f, n——f—l) In(2(n+1)an) < 2a,,w <f, n——|—1> (n+1)

T n+1
+1/) /i

n

< 4a,,, /jﬂw (f, %) dt
(f,
u2

T ow(f,u)
= AT Ay, ———du

n+1
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(K+1 Ann Ann
Kl/ <f’ WU <ok, () + 1) @du

1
n+1 (K1) (n+1)

SKQ/ mw(fu)
0

u

and by Lemmal.1we obtain {.12).

Assumingr > 1 we can use the Holder inequality to estimate the following
integrals

and

e

KFD)(nF1) EFD(FD)

1 1—
T r Ann 1 r
Mdu} { / _du}
U Ceavceay i

< {2+ 1 an)} {/ mdu}i

u

From this, if (L.17) holds then
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=0 ({0 D} {anatt (1 7) }i)

and if (1.17) and (L.19 hold then

w(f T >ln(2(n+1)ann)

"n+1

a . 1 Rate of Strong Summability
S 2K1 (K + 1) T {111 (2 (n + 1) ann)}l_% / mdu by Matrix Means
0 U Bogdan Szal
1 T 1 vol. 9, iss. 1, art. 28, 2008
) ({m 2(n+1) an)} " {amH (’r’; —)}>
n
This ends our proof. O Title Page
Lemma 4.6. If (1.2), (1.6) hold andw (f;t) satisfies {.17) with > 0 then SIS
n T - 4 44
If, in addition,w (f;t) satisfies {.19), then TS L8 Gl
n Go Back
- T
(4'14) Z Unk (f’ k + 1) =0 (anoH (7“; anO)) ) Full Screen
k=0
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for anyn > m > 0, whence we have

(4.15) A, < (K + 1) appm.

From this and usingl(17) we get

n

> o (£ ) < K Daw Yo (7
k=0 k=0

k+1

n+1 T
gKan/ W fi—)dt
e ( t>

T u2
1

=0 (ot (7).

Now, we prove {.14). Since

(K+1) (n+ 1) an > Y aw =1,
k=0
we can see that

n

[reryegg L
ZankwT (f’k'j—l) S Z ankwr <f - )

k=0 k=0 k+1

n

+ ) ame (f i ) :

ht1
b= etyag |
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Using again {.2), (1.6) and the monotonicity of the modulus of continuity, we get

n

(416) > aue (f; - )

— k+1

[ ety |

<S(K+1aw Yy, w*(f; ”)

k=0

+ K" (f;m (K 4+ 1) ay,) Z ke

b= trerhyamg | L

(K+%)an0 r T r
SKzano/ w (ﬂ;) dt + Kiw" (f;7 (K + 1) ano)
1
< K3 (anO/ %J;;U)d“"‘w (f; anO)) :
ano

According to
n| ano )" ;t ano , ,r ;t
w’"<f;ano>g4rwr(f;%)gw/ %MM/ Mtf at
e 0

(1.17), (1.19 and ¢.16) lead us to 4.14). O]
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5. Proofs of the Theorems

In this section we shall prove Theorems, 2.2and2.3.

5.1. Proof of Theorem?2.1

Setting Rate of Strong Summability
Rn (33 + h, .1’) = Tn (f, T, T+ h) — Tn (f, T .’I) by Matrix Means
and Bogdan Szal
gh (iL') _ f (l‘ 4 h) B f (l’) vol. 9, iss. 1, art. 28, 2008
and using the Minkowski inequality for > 1, we get
Title Page
| (2 + b, )] ) ) Contents
=8> ank 1Sk (f;2+h) — f<x+h>|’”} - {Zank Sk (f:2) — f(x)V} L»
k=0 k=0 | >
" v Page 21 of 27
<Y ank Sk (gns ) —gn (@) ;
k=0 Go Back
By (4.2) we have Full Screen
|R, (x + h,z)| Close
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3=

T T "
< Ky Z A 4" (g/‘w k;——l—l) + <W (giu nt 1) In (2 (n +1) ann))

k=0
Since
90 (2 +0) = gn (D) S1F 0+ 14+R) = f @+ )|+ 1 (2 +0) = f (2) R
and Bogdan Szal

vol. 9, iss. 1, art. 28, 2008

g (2 +1) —gn ()] < |f (@ +1+h) = f e+ D[] (@ +h) = f(2)] < 2w (]h]),

therefore, fol) < k < n, Title Page
T T Contents
5.1 — ] <2
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Page 22 of 27
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On the other hand, bys(1),

(5.4) |R,(z+ h,z)|

< 2K, Z A 4" (ﬁ kL—l—l) + (w ( ’nL+1> In(2(n+ l)a,m))r

k=0

Using (6.3 and ©.4) we get

&5 ~o (D)
B ([ G 0 1 LA
- h;é% w(|h|) (||Rn< + I, )Hc)
<Kz (1410 (2(n+1) an))
[25]
8 kz_o Gkt (f’k+1)

Similarly, by (4.2) we have

6.6) T (£, < Ko me ( ”)

Rate of Strong Summability
by Matrix Means

Bogdan Szal
vol. 9, iss. 1, art. 28, 2008

Title Page
Contents
44 44
< >
Page 23 of 27
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:B.Szal@wmie.uz.zgora.pl
http://jipam.vu.edu.au

S K4 (7% 4kwr <f7 )
’ k+1
h=0 Rate of Strong Summability
, % % by Matrix Means
™ Bogdan Szal
—|In(2 1) anp
+ (w <f7 n+ 1) n ( (n + ) “ )) } vol. 9, iss. 1, art. 28, 2008
2 W
% Z 4" ( 1, P 1) Title Page
k=0 Contents
- r %(1_5) << >
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<Ks(1+In(2(n+1)am)) Page 24 of 27
[nTH] - Go Back
x ; n 4k (f’ k+ 1) Full Screen
1(1_£) Close
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T
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Collecting our partial results5(5), (5.6) and using Lemma .4 and Lemmat.5 we ceons 1uuaoench

obtain that £.1) and .2) hold. This completes our proof. O
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5.2. Proof of Theorem2.2
Using (¢.3) and the same method as in the proof of Lem¥mawe can show that

24

(5.7) Z - (f, - j_ 1) =0 (a,mH (7“; %))

k=0

holds, ifw (¢) satisfies {.17) and (..18), and

(5]
(5.8) Z U 2" <f7 - :rL 1) = O (@ H (75 apn))
k=0

if w (t) satisfies {.17).

The proof of Theoren2.2is analogously to the proof of Theoreil. The only
difference being that instead of.¢), (4.5 and ¢.6) we use {.3), (5.7) and .9
respectively. This completes the proof. O

5.3. Proof of Theorem 2.3

Using the same notations as in the proof of Theoreimfrom (4.4) and €.2) we get

(5.9) IR, (z+ h,z)| < K, {Z ani B (gh)}

k=0

- T
S K2 {Zankwr <gh7 kf—l— 1)}
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1
T
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On the other hand, by}(4) and £.1), we have

(5.10) Fon (@ + by 2)] < Ko {ZG”’“”T (g’“ R 1>}

k=0

1
S 2K2 {Z a,nku)T <f7 kLH) } . Rate of Strong Summability

k—0 by Matrix Means

L. Bogdan Szal
Similarly, we can show that T

n T s
(5.11) T (£, )l < Ko {Zankw (f, = 1)} | Tile Page
k=0

) ) ) Contents
Finally, using the same method as in the proof of Theotehand Lemmal.6, (2.6)
and @.7) follow from (5.9) — (5.11). O 4 4
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