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Abstract

In this paper we obtained existence and uniqueness results for the modified
second order slip Reynolds equation modeling the performance of the slider
head floating over a rotating disk inside a hard disk drive. The existence and
the uniqueness are proved using the Ky-Fan's Lemma and some monotonicity
techniques.
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The advent of mini-fabrication and the ability to develop micro-machines for

various applications have made micro-scale fluid dynamics increasingly impor-
tant. In terms of application, microelectromechanical systems are devices hav-
ing characteristic length of micrometer or even nanometer order. Microscale
flows are found in micro-pumps and micro-turbines and in such applications,

the flow cannot be considered as a continuum. This involves the selection of
an appropriate model and boundary conditions. This deviation is measured

On the Second Order Slip

by the Knudsen numbel’,) (the ratio of the molecular mean free path and Reynolds Equation with
the film thickness). Normally, flow can be classified into three categoties [ 'V'°'ec“'jn'gyl’}ﬁi’g;‘gsr;ei’fte“ce
K, < 1073 the flow can be considered as a continuuif; > 10 the flow is

considered to be a free molecular flowy—3 < K, < 10 the flow can neither TEE At 1el) £

. My Hafid El Bansami
be a continuum flow nor a free molecular one.

The conventional Navier-Stokes equations are based on a continuum as-
sumption and it is no longer valid if the Kundsen number is beyond a certain Title Page
limit [ 1]. A typical example is the case of the slider head floating over a rotating Contents
disk inside a hard disk drive (HDD).

This type of thin-film problem has been approximated by the famous Reynolds & D
equation which is derived from the inertialess form of the Navier-Stokes equa- < >
tions combined with the continuity equation. Appropriate modifications such

. o . ) : Go Back
as slip boundary conditions are the realm of micro-fluid mechanics. Another o=ac
approach is molecular-based models which are derived from kinetic theories. Close
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Figure 1: Slider-bearing flow geometry Molecular Dynamics: Existence
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1.1.1. Reynolds equation for thin film problems The well-known Reynolds

equation in the continuum regime ig/] Title Page
Contents
o (ph?® op o (ph?® op d(ph)  A(pUyh)
o\ e T\ ) =01(2 - ’ <44 >»
Oxy \ p Oy 0xy \ j Oxg ot 0,
wheref is the local gas bearing thicknegsthe local pressureg; the local gas ‘ >
density, the viscosity and/, is the moving plate velocity. In the slip regime Go Back
the above equation needs modifications. Taking the Hsia’s second order model, Close
the boundary conditions are given as follows [
Quit
_ 2 92
Ux1($3=0):Ug—|—2 T)\% —)\—aUgl Page 4 of 26
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2—71_0U. A2 02U,
U (x5 =h) = — et T e e
2—71_0U, A2 9%U,
Up,(x3 =10) = A —= - 2 4.
g T 03 |pmg 2 073 |,
2—71_ 0U. A2 02U,
Uﬂ? = h = — )\ —I2 _ x2 _l_ .«
:(73 ) T 0x3 |pop 2 023 |,y
U.,, U,, : the velocity distributions.
7: IS the surface accommodation coefficient. OF? the aecltz)nd Ct)_rder ?:].p
. . . eynolas uation wi
A: is the mean free path, = %%, / % (whereR is a gas constant, is a local Molecu)llar Dynaﬂqics; e
gas temperature and = £ with p, is the ambient temperature). and Uniqueness
For these boundary conditions, the velocity distributions are obtained by solving Khalid Ait Hadi and
the momentum equationJf My Hafid El Bansami
1 8]7 A+ X3
m:@'a—%(gfg—th—h/\—Az)ﬂLUO(l—h+2/\)» Title Page
1 0 Content
v = o o (23— hag — hA = \?). onients
2 Oy « >
The second order modified Reynolds equation can hence be obtained by in-
corporating the expressions©f, andU,, into the continuity equation and then d
integrating frome; = 0toxs = h Go Back
d(ph) 1 9(pUsh o1 0 h?
('0)+_. (Po): I P BTV IS Close
8t 2 85(71 8:1;1 2,u 0x1 6 QUit
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Normally, the non-dimensional second order slip Reynolds equation (in the sta-
tionary regime) is used which is given byj{

(1.2) v KH?’P + 6K, H* + 6K§%) vp} =A-V(PH),

A :is the bearing vectot! = -

1.1.2. The Molecular Models The mean free path is the average distance On the Second Order Slip

travelled by a molecule between collision and is defined as: Reynolds Equation with
Molecular Dynamics: Existence

d Uni
mean thermal speed and Uniqueness

collision frequency Mf/hgg‘f’i cfngBa:r']:;rgi

(1.2)

To obtain the mean free path, it is essential to calculate both the mean ther-
mal speed and collision frequency, the terms in equatio®) depend on the Title Page
molecular models used.

There exists three models: the (HS) Hard sphere model (equatidp (he
variable hard sphere model (VHS]][and the (VSS) variable soft spher&]. < 33
If we take the (HS) model as a reference, we can write a generalized mean free

Contents

path)\’ for the three cases (HS, VHS, VSS) where= ¢ such that ‘ >
Go Back
e ¢ =1 for the (HS) model;
Close
o (= ( )m—w for the (VHS) model; Quit
Page 6 of 26
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wherea, w, I' are determined by the type of gas and can be obtained from
experimental data.

The non-dimensional modified Reynolds equation may be obtained as:

(1.3) \Y KHffP + 66K, H? + 6§2K2%) vp} =A-V(PH).

In [4] Chipot and Luskin studied an analogous equation Withouﬁﬁﬁé@%
term, they proved existence and uniqueness by using a change of the unknown . . . Siip
function which leads to a new problem in which the nonlinearity appears in the |Re)|/§r0§;ngﬂquiggpwsnt2nce
convection term. e
The same proof technique does not work in our case due to the degenerate ;
term 6§2K2%, which motivated our intention to search in this sense.
In this work we will prove existence and uniqueness of weak solutions of
equation {.3) using a generalization of the Ky-Fan Lemma and preserving the
idea of a new unknown function.
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We consider the following probleni):

V [(H?P + 6£K,H? + 662K 2) VP| = AV(PH),
(P) r = (x1,29) €

P=Y inoQ,

where( is a region ofR? with a smooth boundarg2.
We assume that the functiod$ : @ — R andV : 00 — R satisfy the
following hypothesis:

H e Wh=(Q)
(Ay) H is bounded idV1>(Q) anda < H(z) < ba.e inQ

with a, b are two positives constants

¥ is the restriction t@)2 of a smooth function defined orf)
(Ag) such thal| V| 12 (q) < M
with M is a positive constant.
We introduce the following set in order to give a variational formulatiorFf (

Vi={ue H(Q)NL®) /3a > 0suchthat(z) > a a.einQ}.
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For the following, we denote bl || the norm inL?(2).

Definition 2.1. We say thatP is a weak solution of @) if P — U € H}(Q),
PeVand

(2.1) / <H3P + 66K, H? + 6521(3%) VP Vv dz
Q
= / PHA -Vvdr Yv e Hy(9Q).
Q

We prove the existence of a weak solution 8 Py using a change of the
unknown function. Let us write foP > 0,

(2.2) (HSP + 66K, H? 4 66 ng) VP

P? P log(P)
e (0 2
_HV(2+6§KH+6£K e )

+ 66K, PHVH + 126 K2 1log(P)V H.

The new unknown function will be

(2.3) w2y 6K, —

P log(P)
6E2K2—— 2.
2 H +68

n H2
We consider the function : 10, +oo[ — R
2

t
g(t) = 5 6K + 662 K2 log(t).
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It is easy to see thatis an increasing and bijective function. We have from the
above equality

(2.4) P = %/@(l’,u),
with
(2.5) k(z,u) =g ' (Hu+ 68K log H) .

Our initial problem ) becomes in

(V- (Hu)
=V -[(A=66K,VH) k(z,u) — 1262K2 log k(z,u)VH|
(P.) +V - [126K, log HVH] inQ
2 v 5 o log(W) .
| 4= W= 6K+ GE RIS in 00,
We set _
~ U2 v 2log(\I/)
U, = o+ Ko+ 68K,

while keeping (due toAs,)) the fact that| V¥, || < M, (with M is a positive
constant).
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Definition 2.2. We say that: is a weak solution of@,) if v — v, € H}(Q) and

(2.6) / H*Vu.Vov dr = / (A —=66K,VH) k(z,u)Vv dz
Q 0
—/12§2K210gn(x,u)VHVv dx
Q
+/ 12¢K, log HVHVv dz Vv € Hy(9).
Q

The equivalence betwee®) and (P,) is given by the following result.

Lemma 2.1. u is a weak solution of@,) if and only if P, given by 2.4), is a
weak solution of P).

Proof. It is clear from @.2) that the two variational formulas are equivalent.
And from (2.3) it is obvious that if? € V thenu € H'(Q). It remains to show
that if v is a solution of ) thenP € V. From @.4) we have that” € H'(Q)
since(g~')’ is bounded. On the other hand, we have classieally L>°().
From 2.4) we deduce thaP belongs taL>(£2) with P bounded away from,
and the proof is ended. O

Proposition 2.2. Under hypotheses4() and (4,), if we have

a3

(2.7) > 1

A
Cob? (Ul + 3V H] )
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(where(, is the constant of Poincaré], ||A||, is the Euclidean norm af),
then, for all solutionz; of the following inequality

/QH:”V <z1 + \ffu) -Vzdx

< / (A — 66K,V H) k(z, 21 + ) Vzida
Q

- /Q 12§2K721 IOg ’i(:l:? z1 + \IJU)VHvzldx On the Second Order Slip

Reynolds Equation with
Molecular Dynamics: Existence
+ / 12£Kn log HVHVZld:E, and Uniqueness
Q

Khalid Ait Hadi and
we have My Hafid EI Bansami

(2.8) [V < C. _
Title Page

Proof. We have Contents
44 4 2
4 >
< / (A — 66K, VH) k(z, 21 + ¥,)Vzda Go Back

Q

/QH?’V <21 + \Tlu> - Vzide

Close

Quit

+ / 126 K, log HVHV zydx, Page 12 of 26
Q

—/12§2K210gﬁ(:p,z1+\TJU)VHVz1dx
Q
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then
/ H3(Vz)? < / (A — 66K, VH) k(z, 21 + ¥,)Vz
Q Q

- / 1262 K2 log k(x, 21 +\Tfu)VHVz1
Q

+ / 126K, log HVHV 21 — / H*V VU,
Q Q

Due to the fact that, for al € R,

dgil o gil(s) 1
(2.9) 0< ds (s) = (g71)%(s) + 6EK,g71(s) + 662 K2 = 66K,
0 < Liog(g™\(s)) = 1 1

ds (0 2(s) 1 66K, g 1(s) 1 62K = 6E2K2

it follows that

1
* 66K,

X [HH2 (21 + {Ivfu> + 662K log H — 1H + QY2 g_l(l)] |V 2|

a* [Vz||* < [|(A - 66K,V H)|

+2|VH| [HHQ (21 + W0 ) + 662K 1og H - 1”
1012 log (971 (1) ] 19241

4 126K, log HVH]| |V 2| + b7 Hv@u

IVl
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i.e.

1
(o s - ﬁmvmum G Gt = 21V HIL G ) 92

< |[(A = 66K, VH)]

o 6§K
+2|VH| [HH2\IIU 662K log H — 1H 19 og (571 (1) ]

+12¢K, ||log HVH| +b3‘

where|(}| is the measure db.

However, if

a3

b (e + 311V AL,

> 1,

hence

1
<a3 — (A = 66K, VH)| . %—Knopzﬂ —2||VH], Opzﬁ) >0

then||Vz || < C, where

cte

C =

@® —[[(A = 6EKnV H) || 5gie; Cob? = 2[|[VH]| Cpb°

6§K

such that

[HH2\I/ 62K log H — 1H+|Q|1/2 g7 (1)

[HHQ\I/ 462K log H — 1H+|Q|1/2 g (1)
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+2||\VH]|. [HHQ\TIU L 6E2 K2 log H — 1H 19 log (47 (1))]

4 126K, ||log HV H|| + b Hv\iu

]

Now, we will prove the existence of a weak solution for the probl&) (

Proposition 2.3. If the hypothesesA;), (4,) and 2.7) are verified then there
exists at least one weak solution far, ().

For the proof we need the following theorem:

Notation . We denote byF(X) the family of all non-empty finite subsets of
X and by F(X, z) all elements ofF(X) containingz,. We shall denote by
conv(A) the convex hull oft, byZX the closure ofd in X and byint x(A) the
interior of A in X.

Theorem 2.4.Let £ be a topological vector space ard be a hon-empty con-
vex subset of); &, P, : X x X — R such that:

1. ®1(x,q) < Po(x, q) forall x,q € X and®dy(x, x) < Oforall y € X.

2. Forall A e F(X)andallx € conv(A), g — P1(x, ¢) is lower semicon-
tinuous onconv(A).

3. Forall ¢ € X, theset{x € X, ®3(x,q) > 0} is convex.

4. Forall A € F(X)andally, g € conv(A) and for every ne{q, } converg-
ing in X to g with ®;(tx + (1 — t)g,q,) < 0forall « and allt € [0, 1],
we haved, (y,q) < 0.

On the Second Order Slip
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5. There exists a non-empty closed and comgaaif X andz, € K such
thatq)l(l‘(),q) >0Vq e X\K

Then there existg € K such thatd,(y,g) < 0Vy € X.

Remark 2.1. If the applicationg — ®4(, q) is lower semicontinuous oK for
all y € X, then the conditions (2) and (4) are verified.

Definition 2.3. [6]. T : X — 2% is said to be aK K M-application if for all
Ae "T<X)’ COnU(A> C XLGJAT(X). On the Second Order Slip

Reynolds Equation with

. . . . . ) Molecular D ics: Exist
First, we recall the following lemma that is a generalization of the Ky-Fan's """ 5 Siqieness

lemma.

Khalid Ait Hadi and

Lemma 2.5.[5]. Let X a non-empty convex subsetF (a topological vector My Hafid El Bansami

space) andl’ : X — 2F is a KKM-application, we suppose that there exists

xo € X such that: Title Page
i) T(zo) N X is compact ony. Contents
i) VA € F(X,x0),Vx € conv(A), T(x) Nconv(A) is closed inconv(A). S s
< >
i) VA e F(X,z9), X N (XGCOQU(A)T(X))X N conv(A) = (XECOQU(A)T(x)) N Go Back
conv(A). Close
Then N T(x) # 0. Quit

x€X
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Proof of Theoren2.4. We put for ally € X
T(x)={g€ X/ ®i(x,q) <0}.

The condition (5) implies thaf'(z) C K, i.e. T(mO)X is compact onX.

The condition (2) implies thatx € conv(A), T(x) N conv(A) is closed on
conv(A).

Conditions (1) and (3) imply thaf is a K K M —application.

Indeed, let us suppose the oppositeig not aK K M —application), then there
existsA € F(X) and there existg, € conv(A) such thaty, ¢ XLeJAT(X), ie.

Vx € A, ®1(x,q) > 0. However{x € X / ®(x,q0) > 0} is convex, then
conv(A) C {x € X / ®1(x, q) > 0}. Therefored,(qo, q0) > 0 by following
®4(q0, g0) > 0 (which is absurd).

It remains to show that

Xn( N T(X))X N conv(A)

x€conv(A)
= ( N T(X)) Nconv(A), forall A € F(X).
xEconv(A)
Letg € XN( N T(X))X N conv(A), then there exists a sequengg)

XEconv(A)

such thay, — gandg, € XN( N T(x)). Howeverg, € N T(x)

XEconv(A) XEconv(A)
implies that®, (, g,) < 0 for all xy € conv(A),i.e. ®,(tx + (1 —t)q,qa) <0,
for all x,q € conv(A) and for all ¢ € [0, 1] then (4) implies thaf, (x,q) <0
for all x € conv(A)ie. q € ( N (A)T<X>) N conv(A). By application of

XEconv
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Lemma2.5, there existg € K such thatf € T'(x) Vx € X, i.e. there exists
g € K such thatb(y,q) <0Vy € X. o

Proof of Propositior2.3. We make a translation for the unknown function to
bring it to the same space that functions test. et u — ¥,, € H (), then
we searchv € HJ () such that

(2.10) /H3Vw-Vvdx:/(A—6§KnVH) k1 (x,w)Vode
Q Q
—/12§2K210g/£1(x,w)VHVde+/12§KnlogHVHVvdx
0 Q
—/H3V@U-Vv dr Vv € HL(Q),
Q

with 51 (z, w) = k(z, w + U,,).
Let us consider the spade:= H;(f2) endowed with its weak topology and

X={4p € B/ |¢lme <C+1}

(C'is the constant given in Propositich?). Consider the following applica-
tions:

D1(x,q) == Pax,q) = / H*VqV(q — x)dx — / F(q)V(q — x)dx
Q Q
such that

F(q) = (A — 66K, VH) ki(x,q) — 126° K2 log Ky (7, q)VH
+12¢K,log HVH — H*VU,
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for all x, qin Hy(Q).

We will show that conditions of the theore? are satisfied.

Condition (1) is evidently satisfied. Since the applicatign— ®,(x, q) is
linear then conditiori3) is also verified. For conditiofb) it is sufficient to take

K= X = {gp € E/ ¢l < c+1}.

According to Remark2.1, it is sufficient to demonstrate that the application

q — ®1(x, q) is weakly lower semicontinuous i (Q2) to conclude that con- On the Second Order Slip
ditions(2) and(4) are satisfied. Indeed, lgt — ¢in H}(Q), then there exists a e
subsequenceg,, such that,,, — ¢in L*(Q) andVg,, — Vg¢in L*(Q). There- and Uniqueness
fore while using the Lebesgue dominated convergence theorem and estimations R A
(29), we have My Hafid El Bansami
/aQF(an)ank —X= / GQF(an)Van - / GQF(an)vX Title Page
Q Q Q
Contents
— [ aaF(q)Vq— | axF(q)Vx.
L £ 44 44
For the other term ob, (x, ¢,,,) Wwe have < 3
3 3 3 Go Back
H°N¢,V(gn, —x)= | H -V¢.,.Vagn, — | H -V, Vx.
Q Q Q Close
HoweverVg,, — Vqin L*(Q), then [, H® - V¢, Vx — [, H? - VqVx. It Quit
remains to show that — [, H* - (Vg,,)? is weakly lower semicontinuous in Page 19 of 26
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We consider the applicatidfi : L*(2) — R, z — [, H* - 2> which is con-
vex and strongly semi continuous i (2) therefore weakly semi continuous in
L*(Q). HoweverVg,, — Vqin L*(Q) thenlim (H? - (Vau)* — (Vq)?)) >
0, from where we obtain the result.

By application of Theoren2.4, there existsv € K such thatd (y,w) < 0
for all x € X, howeverw € intg(X) (according to PropositioR.2), then
®y(x,w) < 0. In particular, fory = w+ 0 - ¢ € X, forall ¢ € D(Q2) ando
appropriately chosen, we deduct tdgt ¢, w) = 0, for all ¢ € H} () (by den-
sity of D(Q2) in H}(£2)) which implies that there exists € H} () satisfying
the equationZ.10). O

It follows that we have solutions for the problenis,j and (P).

In the next lemma we give a general monotonicity and uniqueness result for a

class of semi-linear elliptic problems.

Lemma 2.6.Let] C Rand/ : Q x I — R™ an uniform Lipschitz function in
the following sense:

(2.11) AN >0, [l(z,uq) — l(z,uz)| < N|uy — usl,

VereQ and up,us € R.

Let;j : © — R be a function satisfying(z) > oy > 0 a.e.z € ). Suppose that
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u;, 1 = 1,2, is a weak solution to

=V (j(@)Vu) =V - l(z,u;), © €Q
(2.12)
U; = @i, T € 09.

If o1 > @y a.e. 002, thenu; > u, a.e. onf).

Proof. We takeus = u; — uy Which satisfies the problem

uz € o1 — 2 + Hy(Q)
(2.13)
Joi(@)Vu - Vodz = [, (I(z,u1) — l(z,uz)) - Voda.

+
13
ug +6

We have that; € H; (), so we can take (as if]) v = as atest function

in (2.13 with § > 0, which gives

+
2.14 ()Vul -V [ —8 ) g
(2.14) /Q:mx) u (@w) v

However
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which implies

.
(2.15) /Q](x)VugL -V (ugui(S) dex = 5/QJ'($)

Vlog <1+

The right-hand side ofX(14) can be estimated as

ut
(2.16) /Q(l(iﬂ,ul) —l(z,u)) -V (ug i_ 5) du
g;/ﬁﬂi(m,ul) li(, ug)| oz (u§'+5
n 8 U,+
<N —(——=)|d
n a u+
- N iy 3 dx.
;/Q 3 O (u3++5> )
However
B, ug
2.17 s 3
(2.17) U3 Ox; (u?{ + 5)
ous  uy

0 Ug
_6‘8:17,~10g <1—|——

Oz (uf + 5)2

+
)

+
3

7)

5 Oug 1
ox; u?{ +0

)‘Sé‘Vlog(l+u

+
3

J

)|
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So, from @.14) we obtain using alsd(15 — (2.17),

U+ U+
(2.18) ag/ Vieg [ 1+ —= d:cgN«n/ Vieg [1+ =
Q 6 Q 6

Sincelog (1 + %) € Hy(92), from the Poincaré inequality we deduce
Reynolds Equation with

ud
(2.19) / log (1 + —3>
Q )
Molecular Dynamics: Existence

where(, is independent obh. and Unigueness

Then we haved = 0 a.e.z € Q and the proof is ended. N Khalid Ait Hadi and
My Hafid El Bansami

2

dx.

2
dr < 027 On the Second Order Slip

Proposition 2.7. Under the hypothesesA() and (4,), we have uniqueness
among all weak solutions of problerR).

Title Page
Lemma 2.8. We suppose that; is a weak solution to®®,) corresponding to
the boundary datali | i = 1,2. If U1 > U2 a.e. ondQ, thenu; > u, a.e. on ContEns
Q. Further, we have uniqueness among all weak solutions of probiem ( <44 »»
Proof. We apply Lemm&.6with j = H? and < >
= (A — 66K, VH) r(z,u) — 1262K21og k(z, u)VH + 126K, log HV H. Go Back
Close
Due to the fact that, for ald € R, _
Quit
-1 -1
0<% (g g_(s) < 1 Page 23 of 26
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d _ 1 1
0= 35108l () = )+ 6y 1) T 60K © 60K

and the fact thati € W'>(Q), the Lipschitz conditionZ.11) is satisfied for
l. ]

Proof of Propositior2.7. The proof is a consequence of Lemnias and2.8
and the fact thag ! is an increasing function. O
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