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ABSTRACT. The purpose of this note is to prove Hadamard product versions of the Chebyshev
and the Kantorovich inequalities for positive real numbers. We also prove a generalization of
Fiedler’s inequality.

Key words and phrasesChebyshev inequality, Kantorovich inequality, Hadamard product.

2000Mathematics Subject Classificat/oRrimary 15A48; Secondary 15A18, 15A45.

1. INTRODUCTION

In what follows, the capital letterd, B, C, . .. denotem x m complex matrices, whereas the
small lettersa, b, ¢, . . . denote real numbers, unless mentioned otherwiseXBy Y we mean
thatX —Y is positive semidefiniteX > Y meanX —Y is positive definite). Fod = (a;;) and
B = (b;;), Ao B = (a;;b;;) denotes the Hadamard productdfind B. According to Schur’s
theorem [[4, Page 23] the Hadamard product is monotone in the sensé thaB, C > D
impliesA o C' > B o D. The tensor product ® B is them? x m? matrix

CLHB cee almB
(1.1) : Z
(lmlB s ammB

Marcus and Khan in [10] made the simple but important observation that the Hadamard product
is a principal submatrix of the tensor product. The inequality
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holds for alla; > ay > - > a, > 0,by > by > --- > b, > 0 and weightsw; > 0, i =
1,...,n. Hardy, Littlewood and Polya [6, page 43] attribute this inequality to Chebyshev. For
0<a<a; <bw; >0,i=1,2,...,n, Kantorovich’s inequality states that

- " w; a+b)? [ <& ’
a2 (Sen) (55) < 5" ()

1= =1

In Section 2, we state and prove matrix versions of inequalitie$ (1.2)[and (1.3) involving the
Hadamard product. A generalization of Fiedler’s inequality is also proved in this section. There
are several generalizations of Kantorovich and Fiedler’s inequality| 5e&[Z2,13, 8, 9].

2. THE CHEBYSHEV AND KANTOROVICH INEQUALITIES : M ATRIX VERSIONS

We begin with a Hadamard product version of inequality|(1.2).

Theorem 2.1.LetA;, > ---> A, >0andB; > --- > B, > 0. Then

(2.1) (Z w@-Ai> o (Z wiB@-) < (Z wi) (Z w;(A; OBi)) ;

wherew; > 0, i = 1,...,n, are weights.

Proof. We have

(2.2) (Z wi> (Z w;(A; oBZ-)> — (Z wl-Ai> o (Z wiBi>

= Z (wiw;(Aj o Bj) — wyw;(A; o By))

ij=1

1 n
= § Z (U}zw](A] e} B]) — wzwj(Az O B]> + ijZ(Al e} Bz) — iji(Aj e} Bz))

i,5=1
1 n
1,j=1

Since the Hadamard product of two positive semidefinite matrices is positive semidefinite,
therefore the summand|in 2.2 is positive semidefinite. O

Our next result is a Hadamard product version of inequality (1.3) .

Theorem 2.2.Let A,..., A, be such that) < al,, < A;, < bl,,, i = 1,...,n (herel,,
denotes then x m identity matrix). Then

1/2 1/2 1/2 4 1y1,1/2 a”+0b
(2.3) <§ W, =AW, ) o (E W, =AW, ) < 5ah ( E Wl) e <E VV1>
i=1 i=1

i=1 =1

forall W; >0,i=1,...,n.

Proof. We first prove the inequality

(2.4) PY2APY2 o Q1/2371Q1/2 4 P2 A-1pl/2 4 Q1/23Q1/2 <

a® + b?
P
Poq)
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when0 < al,, < A, B < bl,,andP,Q > 0. Let A = UDU* andB = VI'V* with unitary U
andV/, and diagonal matrice® andI'. Then

A B '+ A" B=UV)(DT+T '@ D)(UxV)*
a? 4+ b?

<(U®V) ( (s [m)> UeV)

a’® + b?
= Im [m )
- Un ® L)

where the inequality follows fron (I.3). Thus we have
(2.5) pL/2 g pl/2 ® Q1/23—1Q1/2 + pL/2 -1 pl/2 ® QI/QBQI/Q
_ (P1/2 ® Ql/Q)(A ® Bfl + Afl ® B)(P1/2 ® Q1/2)
a® + b?
< P .
< (PeQ)
Since the Hadamard product is a principal submatrix of the tensor product, the inequality (2.4)

follows from (2.5). On takingB = A and@ = P in (2.4) we see thaf (2.3) holds for= 1.
Further, by|[(2.4) we have

2 2
W AW o W ASWI L WA W oW PA W < T2 Zb (W; o W)
a
fori,j =1,...,n. Summing ovet, j, we have
(2.6) 2% [(W}”Aiwj/?) o (le/m;lel/?)] < (a +b ) S (Wio W),
2,7=1 a
which implies that

<i Wil/QAiM/ilm) o (i I/Vl-l/zAi_lWil/Q> < (a22_c|l_bb2) (il Wl) ] <i m) |

=1 =1 =1

i,j=1

O
The next corollary follows on takiny/; = w;[,,,,i =1, ..., n.

Corollary 2.3. LetA,,..., A, besuchthat < al,, < A; <bl,,andw; >0, 1=1,...,n
be weights. Then

2
n n B 2 +b2 n
(; wiA@) o (; wiA,' 1) < (a2ab ) (;wz> Ip,.

Remark 1. The case: = 1 of Corollary[2.3 is proved in[7]. The example

A:(Q 1>’ a:3—\/3 _3+V5

11 5 e

shows that the inequality
(a+b)?
4ab

Ao Ail S [2
need not be true.
For our next result we need the following lemma.

Lemma2.4.Let0<r <1.Thend"+ A" < A+ A ' forall A > 0.
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Proof. Suppose thatl = UT'U* with unitary U and diagonal matriX. Then
AT+ AT =0T+ U
<UT+D HU =A+ A"
sincez” + 7" < x + 2! for any positive real number and0 < r < 1. O
Theorem 2.5.Let0 < o < 3. Then

=1 =1
< (i W1/2AQW1/2> o (i W1/2AﬁW1/2>

i=1 =1

forall A, >0andW,; >0,i=1,...,n.

Proof. We first prove the inequality
2.7) (Wj/2 A?WS”) . (le/z A;&W;/Q) N (w;/Z A;aW;ﬂ) o (ij A?leﬂ)
< (WA o (WIAPWI) - (WHATW) o (WP AW )

for0 <a < . Let0 <r <1.Then

(W Paw ) @ (w245 w) ) 4 (WA wl ) @ (w2 asw) )

= (WP ew?) (A7 e A + A7 @ A7) (WP @ W) )

— (W}/2 ® Wj“) <(AZ- ® A7 + (4 ® A;l)‘T) (WQ/2 ® ij)

< (Wj/2 ® W}”’) ((A,» ® A7) + (A4 ® Aj—l)‘1> (I/V}/2 ® le/?)

where the inequality follows from Lem@A. Taking- «/ 3 and replacing4; by Af andA;
by A%, we have

(wimagwi ) o (wiazewy?) o (witasw! ) e (w2 agw) )
1/2 4 Bryir-1/2 1/2 4 —Bry,1/2 1/2 —Bry,1/2 1/2 4Bv5s1/2
< (WIPAWLE) @ (Wi AT W) & (WiPATWL) @ (W AT )

Again using the fact that the Hadamard product is a principal submatrix of the tensor product,
the preceding inequality implies (2.7). Summing oxgrin (2.7), we have

(i W.I/QAQW-1/2> o (i W'1/2A‘_QWA1/2>

i=1 =1

< (i Wz'l/zAzﬁWil/2> © (i Wil/zA{ﬁWf”) :

=1 =1
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forall A, >0,i=1,...,n.
Proof. TakingW; = I,,, in Theorenj 2.6 we get the desired result. O
Corollary 2.7. Let0 < . Then

I, < (Z W;/ZA?M/;M) ° (Z I/I/il/QA;ﬁWil/z)

i=1 =1

forall A; > 0andW; > 0,i=1,...,n,where}_" W, =1I,,.
Proof. Takinga = 0 in Theorenj 2.p gives the desired inequality. O
Remark 2. Corollary[2.7 is another generalization of Fiedler’s inequality [5]
Ao At >1,.
Next we prove a convexity theorem involving the Hadamard product.

Theorem 2.8. The function
f(t) — A1+t o Bl—t + Al—t o Bl+t
is convex on the interval-1, 1] and attains its minimum &t= 0 for all A, B > 0.

Proof. Since f is continuous we need to prove only thats mid-point convex. Note that for
A, B > 0ands, tin [—1,1] the matrices

Alts+t Alts Al—(s—i—t) Al=s
( Alts  Al+(s—t) > ) ( Al-s Al—(s—1) ) )
Blts+t Bl+s Bl—(s+t) Bl-s
( RBl+s Bl+(s—t) ) ) ( Bl-s Bl—(s—t) )
are positive semidefinite. Hence the matrix
X _ Altstt o Bl—(s+t) 4 Al—(s+t) o Bltstt Alts o Bl—s +A1—s o Bl+s
= Alt+s o Bl—s + Al=s o Blts A1+(sft) o Blf(sft) _’_Alf(sft) o Bl+(sft)
is positive semidefinite. Similarly, the matrix
A1+(sft) o Blf(sft) _’_Alf(sft) o Bl+(sft) Al+s o Bl—s + Al=s o Bl+s
Y = Alts o Bl—s _|_A1—s o Bl+s A1+(s+t) o Bl—(s+t) 4 Al—(s+t) o Blts+t
is positive semidefinite. Hence
fls+8)+ f(s—1) 2f(s) >
2.8 X+Y =
(2:8) ( 2/ (s) Fls 40+ f(s—1)

is positive semidefinite, which implies that

£() < 31 +0) + fs 1))

This proves the convexity of. Further, note thaf(t) = f(—t). This together with the convex-
ity of f implies thatf attains its minimum at O. O

Corollary 2.9. The function
gty =A'o B4 Ao B

is decreasing or0, 1/2], increasing on[1/2,1], and attains its minimum at = 3 for all
A, B> 0.

Proof. The proof follows on replacingl, B by A'/2, BY/? andt by 2t in Theoren} 28. [
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A norml|| - ||| onm x m complex matrices is called unitarily invariant ffrU XV ||| = ||| X]||
for all unitary matriced/, V. If A is positive semidefinite and is any matrix, then

1140 XI|| < max ag|[| X]|

for all unitarily invariant normg|| - ||| [1]. Thus the proof of the following corollary follows
from Corollary 2.9 using the fact thaf1/2) < g(¢) < g(1) = g(0).

Corollary 2.10. Let0 <t < 1. Then,
2[[| A2 0 BY||| < [[|A* 0 BT+ A o B||] < |||A + Bl
for all unitarily invariant norms|| - ||| and all A, B > 0.
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