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ABSTRACT. The paper is devoted to the important section the Fourier analysis in one variable
(AMS subiject classification 42A16). In this paper we introduce Leindler space of Fourier - Haar
coefficients, so we generaliZe [2, Theorem 7.a.12] and application to the real method spaces.
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1. INTRODUCTION

A Banach spacé|[0, 1] is said to be aearrangement invarianspace (r.i) provided™(¢) <
g*(t) foranyt € [0,1] andg € E implies thatf € E and | f||, < |lgllz, whereg*(¢) is
the rearrangement of(¢)|. Denote byyr the fundamental function of (r.i) spade such that
or = ||ke(t)] (see,[1, p. 137]). Givem > 0, the dilation operatos. f(t) = f(%), ¢ € [0, 1]
andmin(1,7) < ||o; || p < max(1, 7). Denote by

N 1Y [ S ) [ P
T—+0 InT T—00 InT
the Boyd indices of. In general) < ap < g < 1.

The associated spacelibis the_space of all measurable functigfits) such thatfo1 f(t)g(t)dt <

oo for everyg(t) € E endowed with the norm

1
15Ol = sw [ sog
lg@ll <1 /0

For every (r.i) space” space the embedding C FE” is isometric. If an (r.i) spacé is
separable, thefw*) is everywhere dense iA.
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2 VADIM KUKLIN

Denote byV the set of increasing concave functiopg) > 0 on [0, 1] with ¢(0) = 0. Then
each function)(t) € ¥ generates theorentzspace\ (1)) endowed with the norm

M@M@=A¢®WW<w

For every (r.i) spacé& space the embedding C E” is isometric.
Let be(2 the set of(n, k) such thatl < k£ < 2", n € NU {O}. Putyg = 1. If (n, k) € Q,

11 “on < t < 2n+17
Xa(t) =< -1, 3’2& <t< £ Qn,
0, foranyte [52, X=].

The set of functions{x’;) is called theHaar functions normalized inL, [0, 1] (see [2, p.
15-18]). If an (r.i) spacev is separable, the@g’;) everywhere dense iR. Given f(t) € L.
TheFourier-Haar coefficientare given by

%Aﬁzflfwﬁwﬁ

Putg(t) = > cuxxt foranyg e L]0, 1].
(n,k)eq
A Banach sequence spagés said to be aearrangement invariangpace (r.i) provided that
| (an)|lz < [|(a))]l z wherea) the rearrangement of sequen@s, ), cn i.e.

a, = inf{ sup |a;| : J C N, card(J) <n} :
1€N\J

It is maximal if the unit ballB is closed in the poinwise convergence topology inducted by
the spaced of all real sequences. This condition is equivalenkto = £', where

E#* — {(bn)neN CA: Z |anby| < 00, (an)nen C E}

n=1

is theKother dualof E. Clearly, E# is a maximal Banach space under the norm

H(bn)HE# = sup {Z |a'nbn| < o0 ||(an)HE < 1}-

n=1
Denoting = ()2, be a sequence of positive numbers. We shall use the following nota-
tion (seel[3, pp. 517-518]):

An = Z by andAﬁf) = Z )\kA]:C, (Al < OO),
k=n k=n
furthermore, fore > 0. By analogy with[[3, pp. 517-518] we defiheindler sequence space of
Fourier-Haar coefficientsfor p > 0, ¢ > 0, with the norm:

on %

Why do we consider the sequen(ccg k) \? The answer to this question follows from [2,
Theorem 7.a.3], i.eg € A(¢) & sup 2~ pcml(g) < oo. Here, as usualX — Y stands for
0<t<1

_Y < C'lg]|x for someC > 0 and everygye X. The sign
=~ means that these spaces coincide to with within equivalence of norms.
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2. PROBLEMS

By [2, Theorem 7.a.12] fop = 2 we have

o) A
Z CpXill = (Z 27" Z Cik:)
n=1 k=1

(n,k)e2 Lo

If for ||(cnp)~ | ||/\(p,c) we putp = 2,¢ =0, \, = 1, then

H(Cn,k);z.o:l”,\(go) <M Z Cn,kaL

(n,k)e2 Lo

Denote by

T Z Cn k’Xn Cn k)(n k)eQ

(n,k)eQ

Hence by[[1, Chapter 2, 85, Theorem 5.5] we have the operator bounded fgoyimto A(2, 0).
In general we consider

Problem 1. Let0 < ¢ < 1, 1 < p < oco. Whether there exists a operatbibounded from\ (1))
into A(p, ¢)?

Let (Ey, F/) be a compatible pair of Banach spaces. We recall
K(t7g) :K(tmgyE(hEl) inf (HgOHEO t||gl||E1) :

9=90+91,9:€E; (i=

Hereg € Ey+ E1,0<t <1.1f0< 80 <1,1<p < oo, then the spacegdy, E, )y, endowed
with the norm

1 v
ol e, = ([ 0P ) < oo p < o0
and
191l (50,50, = SUP K(t,g)t™" < oo, iff p= oo
’ o<t<1
are called real method spaces. Det ay < oy < 1, 9o(t) = t*°, ¢y (1) = t*,0 < 0 < 1,
1<p< o0, QNﬁ(t) = ﬁ In [5, 82, p. 174] the problem was solved: when does the equivalence

(A(Wo), AW)g,, = (M (o), M (i)

6,p
holds?
We consider the embeddind.(v), A(¢1)),, — (M(wo), M(¢1)> Let0 <ap=a; <

Lyt)=t*0<0<1,1<p< o0
Problem 2. Whether there exist$ < ¢ < 1,1 < p < oo such that
T: (A(w)a A(dj))ap - <)‘<p7 C)7 /\<pa C))H,p ?

In this article we consider Leindler sequence space of Fourier-Haar coeffigients.
To prove our theorems we need the following Theofém 1 (see [4]).
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Theorem 1.1f p > 1,0 < ¢ < 1, then

oo n p p o0
—c p 1— —c
n=1 k=1 n=1
The constant is best possible.

3. LEMMAS AND THEOREMS
Lemma3.l.Letl < p < 00,0 < ¢ < 1 and sup 2*%cn71(g) < oo. Then the operatof’ is

0<t<1
bounded from\ (%)) into A(p, ¢).
Proof. By [2, Theorem 4.a.1] fot < p < co we have

on P
/1 ZCWJCXZ dtﬁ/ ZZC’”‘X" dt<2p/ Z anXn dt,
0 k=1 0

n=Il k=1 (n,k)eQ
wheren <1 < oo.
On the other hand,

]| 2* P
/ Z carXEll dt
0 k=1 L

1 2n 2n
:/ 27 enslPdt =27 el
0 k=1 k=1

Therefore,

o v
<2‘” > Icn,klp) <2|lgll, -
k=1

From the above and]1, Chapter 2, 85, Theorem 5.5] we get

1

00 P
H(enr)nzillzpe <2 (Z AnAnc> 19115 s

n=1
Hence the operatdr is bounded from\(¢)) into \(p, ¢). This proves the assertion. O

Remark 3.2. In the Lemm4g 3]1 the conditioh < ¢ < 1,1 < p < oo is necessary for the
operatorT’.

We shall formulate the sufficient condition of boundedness of the opéfdtam A (1)) into
)\(p7 C)'

Theorem 3.3.Let0 < ¢ < 1, sup 2_%%1(9) < oo. For of boundedness the operatdr
0<t<L1
bounded from\ (1)) into A(p, ¢) is sufficient tha < p < oc.

Proof. By Theorenj L and Holder’s inequality we have

1_
5 Z ‘Cn,k’p 2™

n=1 (n,k)eQ
Now using [2, Theorem 7.a.12 (c. 2)] and [1, Chapter 2, 85, Theorem 5.5] we obtain that

H<C"’f bl 1H,\pc > 1_ Z)‘p 1 711_7 Z CnkXE

This finishes the proof. OJ

B =

o0
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Remark 3.4.1f 1 <p < 2,0 <c<1,thenby|2, Theorem 7.a.12 (c. 1)]: A(¥) - A(p,c).

Theorem 3.5.Let0 < c < 1,2 < p < oo, sup 27%cn71(g) < oo. Then
0<t<1

T (M), A(¥))g,, — (A(p. ), A(p, ©))o,p

Proof. Clearly, by Holder’s inequality the estimate

-1 1—£
||(an n= 1||/\pc 1 _Cz)\ n Cn’k)?:lnfg
holds. It is known that the operat@ris bounded froml., into /5. Then from the above and/[1,

Chapter 2, 85, Theorem 5.5] we obtain

K(t, (eni)nzy Alp: ©), Mp, ©)) < K(t, g, A1), A()).
HenceT : (A(¥), A(¥)),,, — (A(p, ), A(p, ¢))a,p- This completes the proof. O
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