A SIMPLE PROOF OF THE
GEOMETRIC-ARITHMETIC MEAN INEQUALITY
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In this short note, we give another proof of the Geometric-Arithmetic Mean
inequality.
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Various proofs of the Geometric-Arithmetic Mean inequality are known in the
literature, for example, sed][ In this note, we give yet another proof and show
that the G-A Mean inequality is merely a result of simple iteration of a well-known
lemma.

The following theorem holds.

Theorem 1 (Geometric-Arithmetic Mean Inequality). For arbitrary positive num-
bersA;, As, ..., A,, the inequality
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holds, with equality ifand only ift; = A, = --- = A,,.

Lettinga; = Y/A; (i = 1,2,...,n) and multiplying both sides by, we have an Title Page
equivalent Theorer. Contents
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To prove Theorenm, we use the following lemma.
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Iterating Lemmas, we naturally obtain Theorei

Proof of Theoren? by induction om. Without loss of generality, we can assume
that the terms are in decreasing order.

1. Whenn = 1, the theorem is trivial since;* > 1 - a;.

2. If Theorem2is true whem = k, then, for arbitrary positive numbeis, as, . . ., az,

(4) a* +ark + > kajay - ap.

Now assume that; > ay > -+ > ag > agq > 0.

Exchanging factors, ., anda; (i = k,k—1,...,2,1) between the last term
and the other sequentially, by Lemraave obtain the following inequalities
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Asal > aj , a; 1040 ... ax, a; > a1, We can apply Lemma so that
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