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ABSTRACT. For anya := (aj,as,...,a,) € (RT)", defineAP,(x,t) := (z + a1t)(z + ast)

<o (x4 ant) — 2™ and Sa(z,y) == a1t + aga™ 2y + - + a,y"!. The two homoge-
neous polynomialé\ P,(x, t) andtS, (z,y) are comparable in the positive octanty, t € RT.
Recently the author§[[2] studied the inequalty’, (x,t) > ¢S, (x,y) and its reverse and noted

that the boundary between the corresponding regions in the positive octant is fully determined
by the equipoise curvA P, (z, 1) = Sa(z,y). In the present paper the asymptotic expansion of
the equipoise curve is shown to exist, and is determined both recursively and explicitly. Several
special cases are then examined in detail, including the general solutionawhen where the
coefficients involve a type of generalised Catalan number, and the case avkere+ ¢ is a
sequence in which each term is closeltA selection of inequalities implied by these results
completes the paper.
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1. INTRODUCTION

With any finite real sequence := (ay,as,...,a,) € R" we associate two homogeneous
polynomials, theproductpolynomial

n

Pa(w,t) = (x + art)(x + azt) - - - (z + ant) = [ [ (= + art),

r=1
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2 ROGERB. EGGLETON AND WILLIAM P. GALVIN

and thesumpolynomial
Sa(,y) = a1x" ' 4+ agz" Py + -+ ayt T = Z apz" Ty L
r=1

As shown in[2], thdfirst differenceof the product polynomial
AP,(x,t) := Pa(x,t) — Pa(z,0) = Pa(x,t) — 2"

andt times the sum polynomial are degre&@omogeneous polynomials which are comparable
in the positive octant, y,t € Rt := {r € R : r > 0} whena € (RT)". Clearly they are
closely related to the comparison of the prodli¢t , (1 + a,) and the sumx!_,a,. Indeed
Weierstrass [4] derived inequalities equivalent to

n n 1 1
1+§ ar<||(1—|—ar)< . < .
r=1 r=1 H (1_ar) 1_2

r=1 r=1 Qr

whena € (R*)” and0 < ¥7_,a, < 1, whence the producd”_,(1 + a,) andIll_, (1 — a,)

both converge as — oo if ¥7_,a, converges to a limit strictly less than The first and

third of these inequalities corresponddQ(1,1) < AP,(1,1) and—S,(1,1) < AP.(1,-1)
respectively, while the middle inequality simply follows fram- a? < 1 for 1 < r < n, with

strict inequality for at least one The first inequality corresponds to resultslin [2] at the point
(x,y,t) = (1,1,1), but the third corresponds {a, 1, —1), which is outside the positive octant,
and, although easily proved, it is not covered.ih [2]. (A more widely accessible source which
closely parallels Weierstrass’s reasoning Is [1].)

To summarise the results inl[2], let us now suppose that 2 anda is strictly positive,
soa, > 0for 1 < r < n. Then the strict inequalitph\ P, (z,t) > tSa(z,y) holds in a region
(the “A P-region”) of the positive octant which includes the intersection of the octant with the
halfspace) < = + tm(a), wherem(a) := min{a, : 1 <r <n — 1}, and the reverse inequality
AP,(z,t) < tSa(x,y) holds in a region (theS-region”) of the positive octant which includes
its intersection with the halfspage> « + tM(a), whereM (a) := max{a, : 1 <r <n —1}.

The boundary between theP-region and the&-region is theequipoise surface

Ey(a) = {(z,y,t) € (RT)? : APy(z,t) = tSa(z,y)}.
The polynomials are homogeneousairso for any reat we have
APa(z,1) = APy(z,t) and Sip(z,y) = tSa(z,v),

whereta := (tay,tas,...,ta,) € R"™ Hence for strictly positivea € (RT)™ with n > 2, it
suffices to compare the polynomials in the intersection of the positive octant with the plane
t = 1, so we consider thequipoise curve

Ei(a) = {(z,y) € (R")?: APa(z,1) = Sa(z,9)}.

This separates th& P-region of the positive quadranty € R*, whereAP,(z,1) > Sa(z,y),
from the S-region, whereA P, (z, 1) < Sa(x,y). The equipoise curve lies in the strip

r+m(a) <y<x+ M(a)

of the positive quadrant and is asymptotigjte- « + «, whereq is a certain function o4. In
fact, if n > 3 the equipoise curve satisfies

y=z+a+Br ' +0(x? asr — oo

whereaq, ( are functions oh explicitly determined in[[2]. The equipoise curve approaches the
asymptote from thé\ P-region side if5 is negative, and from th&-region side ifj is positive.
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Our main purpose in this paper is to extend our understandingaoid 5 as functions of,
by determining the subsequent members of an infinite sequence of coefficients constituting the
asymptotic expansion of the equipoise curvedoBut first we shall show that the properties
just summarized hold a little more generally.

2. WIDER RANGE OF VALIDITY

To extend the results of [2] it is convenient to introduce some notation. For any sequence
a:= (ay,as,...,a,) € R™and any integek in the intervald < k£ < n, let
Ar(a) := (a1, az,...,a;) and Qg(a) = (Gp_ti1s-- - an_1,0)
be, respectively, thimitial andfinal k-term subsequences af Thus A4, (a) = Q,(a) = a and,
if w is the empty sequencé(a) = Qy(a) = w. Alsom(a) := min{a, : 1 <r <n -1} =
min A,,_;(a) andM (a) := max{a, : 1 <r <n—1} = max A,_;(a). Asin [2] we also use
Y(a):= X" a,.
First, a simple reformulation of Corollary 2.2 of [2] becomes
Theorem 2.1. For any finite sequenca € (R")" with n > 3, and for all strictly positive
z,y,t € R if A,_1(a) is not constant then foy > x + ¢t max A4, (a) we have
0 < tX(a)s" ! < AP,(x,t) < tSa(z,y),
while fory < z +tmin A,,_;(a) andz := min{z, y} we have
AP,(z,t) > tSa(z,y) > t3(a)2"! > 0.

To investigate the equalith P, (z, 1) = Sa(z,y), in [2] we imposed the sufficient condition
thata € (R*)™ be strictly positive. However, we note thatify are strictly positive then
0
—Sa(z,y) >0
9y (z,y)

holds if and only ifQ2,,_;(a) # 0, where0 € R"~! is the constant sequence with every term
equal to0. We shall abbreviate this condition by saying “if and onl\if ;(a) is nonzero”.
Then continuity ofS,(x, y) as a function of; ensures the following broadening of the scope of
Lemma 3.1 of[[2]:

Theorem 2.2. For any finite sequence € (R*)™ with n > 2, and strictly positiver,y € R,
if Q,_1(a) is nonzero then there is a functigg(z) such that
< Salz,y) ify>yolz),
APa(.Z‘,l) = Sa(.fC,y) Ify:yO(x)a

> Sa(z,y) ify <yo(x).
Furthermore
r+min A, j(a) <y(zr) <z+maxA,_(a).

Asin [2], itis convenient now to define two familieseéquence functionts,, W, : R” — R,
for any positive integen and all positive integerk < n. These functions are needed to describe
the coefficients in the asymptotic expansiorycf y(z), the equipoise curve fai.

Thekth elementary symmetric functiar), of a € R” is the sum of all productix asx runs
through thek-term subsequenceasC a, thus

Ye(a) =X {llx: x Ca,|x|=k}.

In particular,X; (a) = ¥"_,a, andXy(a) = /25" a,a, if n > 2. We extend the definition
by setting>;(a) = 0 for any integelk > n.
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The kth binomially-weighted suf¥/;, of a € R" is the sequence function

Wi(a) == 2”: (; i D .

r=1

In particular,iV; (a) = ¥7_,a, andWs(a) = X, (r — 1)a, if n > 2. Note thatiV;(a) = 2 (a)

holds for anya. Once again we extend the definition by setting(a) = 0 for any integer

k > n. Now Theorenj 22 justifies the following broadening of the scope of Theorem 3.1 and
Corollary 3.2 of [2].

Theorem 2.3. For any finite sequence € (R*)™ with n > 2, and strictly positiver,y € R,
if 2,,_1(a) is nonzero then the equalityP,(z, 1) = Sa(z, y) holds for largez when

y=r+a+Br ' +0(x?) asr— oo,

where
a:=Yy(a)/Wa(a) and f:=(33(a) — a*Ws(a))/Ws(a).
Note thats = 0 if n = 2. We will extend Theorerp 2|3 in the next section.

3. ASYMPTOTIC EXPANSION OF THE EQUIPOISE CURVE

Let us first establish the existence of the asymptotic expansiéh(ef) for suitablea.

Theorem 3.1. For any finite sequence € (R)" withn > 2 and(2,,_;(a) nonzero, there is an
infinite sequence: := (a1, as, ...) € R* such that the equipoise curvg (a) has asymptotic
expansion

Yy~ <1 + Zasx_s> asr — oo.
s=1

Proof. By Theoren 2.3, there is an € R such thatt (a) isy = z+a; + O(z ') asz — oo.
Now assume for some positive integ€rthat there is a sequen¢e;, as, ..., ay) € RY such
that £y (a) is

y_x<1+Za:c s) + fn(x),
with O(fx(z)) = O(x™") asz — oo. Then
AP,(z,1) = Sa(z,y)

(i) )
=D o (1 > w) + 3 (r = Daga™ 2 () + O(a" V),

Note thatO (z" 2 fy(z)) = O(z" ¥ ~2). Our assumption folV implies that coefficients of pow-
ers ofz down as far ag"~"~! on the right match the corresponding coefficientaiR, (z, 1),
so it follows that

n

S~ Darfw(a) = o™ + 0™,

r=1
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where the coefficierttis equal to the difference between the coefficients’of* —2in AP, (x, 1)
and inYX"_ a, 2" 1(1 + B a,27*)""L. The coefficient offy(x) is nonzero becaude, ;(a)
is nonzero. Letvy,; :=¢/X" (r — 1)a,. ThenE;(a) is

N+1
y=ux <1 + Z Ozsx5> + 0>z~ h).
s=1

The theorem now follows by induction . O

Under the conditions of Theorgm B.1, the equipoise cih@) has an asymptotic expansion
with coefficient sequence = («y, s, . ..) asz — oo. SinceWy(a) = X", (r—1)a,., the proof
of Theore shows thaty = cy/Ws(a), wherecy is the difference between the coefficients
of 27% in the expansions

AR 5 (a) 4 Sy + S(a) szﬂ

xn

and

n N—1 r—1 00
a, (1 + Z ozsx_S) = Z COni(a)z ™,

k=0
socy = Xyi1(a) —Cyy(a). Of course, we have yet to determine the coeffici€rig. (a), but
note immediately that'y . (a) = 0 for all sufficiently largek.

Letd := (dy,...,dn_1) € (ZT)N~! be a nonnegative integer sequence suchtat sd, =
kandx"'d, = m. Thend is apartition of k£ with length N —1 andweightm. Corresponding to
eachd with weightm < r — 1, there is a term i =" in the expansion o(l + 2N o S)T*1 ,
with coefficient (1)

r—1) dy ds dn-1
(r—m— Dldldy! . dy_y! LNt
For convenience we abbreviate such expressions with the following compact notation for the
product

N-1
d
a®

s=1
and the multinomial coefficient

Sd)Y = ml
d /) 1m¥ila,)

whereX(d) = m. Thus the coefficient of the term irm* corresponding tal in the expansion
of (1+ ) e 5)7"_1 becomes

() (oo

where the first factor is the binomial coefficigfit '), which by definition i) whenm > r —1.

Let P(k, N —1,m) C (Z")"~! be the set of all partitions df with length NV — 1 and weight
m. Then in the expansion At"_,a, (1 + Eé\’:‘llasx*)’ﬂ_l the coefficient of the term in—*
corresponding to any particuldre P(k, N —1,m) is

Xn: (T - 1) a, <Z> a(d) = (73> ()W (a).

r=1

J. Inequal. Pure and Appl. Math3(5) Art. 84, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 ROGERB. EGGLETON AND WILLIAM P. GALVIN

Summing over all partitions i®(k, N — 1,m) and all relevant weights: yields Cy . (a),
the total coefficient oft=*. Whenk = N we obtain the coefficienf'y y(a) needed for .
Simplifying notation withP(N, m) := P(N, N —1,m), and noting tha®’(N, 1) = (), we have

Theorem 3.2. For any finite sequence € (R™)" withn > 2 and(,,_;(a) nonzero, the asymp-
totic expansion of the equipoise curkg(a) is

Yy~ (1 + Zasx_s> asr — oo,
s=1

where the coefficient sequenee= (ay, as,...) € R> is given by

= Ynt1(a) — Cyn(a)
WQ(a)

for eachNV > 1, with

Cnn(a) = i > <7§>0z(d) Wins1(a).

m=2 \ deP(N,m)

In particular, whenV = 1 we haveP(1,m) = () soC; ;(a) = 0, since its inner sum is empty.
This gives; = X(a)/ Wa(a), consistent with Theorem 2.3. Again, whah= 2 the sequence
(2) € R! is the unique partition o with length1, so P(2,2) = {(2)} and the inner sum for
Cyo(a)is (3)a(2) = o2, whenceCs»(a) = a?Ws(a). Thenay = (S3(a) — aiWs(a))/ Wa(a),
again consistent with Theorgm P.3. Substituting herevioand suppressing the argumerto
simplify notation yields

YL WE — X2,
= W ,

WhenN = 3 we haveP(3,2) = {(1,1)} and P(3,3) = {(3,0)}, so Theorenj 3]2 yields
asz from C33(a) = 2a10,W3(a) + oW, (a). Substituting fora; anda, and suppressing the
argument now yields

)

B, Wy — SEWLW, 4 285W5 — 28,5, WE W,
— W ,

Evidently continuing this process will yield an expression for any just in terms of the
elementary symmetric functions and the binomially-weighted functions of the seqaehcte

the next theorem we characterize the summands in this explicit expressiog,fout first we
introduce some notation. For any integer sequehee(Z")" let

(6%

2(d) = [[Sra(@)™ and W(d) := [ We(a)™.

As previously, we shall usually suppress explicit mention of the argusémim expressions
of this type. We also need the following family of partition pairs:

Q(N) := {(d,e) :d,e € (2NN, Zrdr =N,

N N
ZreT:ZN—Q,Z(dT—I—eT):2N—1},

r=1 r=1

J. Inequal. Pure and Appl. Math3(5) Art. 84, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ASYMPTOTIC EXPANSION OF THEEQUIPOISECURVE OF A POLYNOMIAL INEQUALITY 7

that is, pairs(d, e) of partitions of N and2N — 2 respectively, each of length’, with sum
of weights equal t® N — 1. (This places no effective restriction ah but does constraie
significantly.)

Theorem 3.3. For each integerV > 1, the coefficientyy in the asymptotic expansion of the
equipoise curve’, (a) satisfies an identity of the form

axWiN = 3" c(d,e)B(d)W(e),
(d,e)€Q(N)
where each coefficiertd, e) is an integer dependent only on the partition p@dr, e).
Proof. Note thatQ(1) = {((1), (0))} anda; W, = 3, so the theorem holds whe¥i = 1, with

c((1),(0)) = 1. Now fix N > 1, and suppose inductively that the theorem holds forallvith
1 < s < N.By Theorenj 3P,

N
M
anWiN " =Sy W= Y (D)a(D) W2 W4
)

M=2 \DeP(N,M

The first term on the right is of the required form, since it(id, e)X(d)W (e) with ¢(d, e) = 1,
whered = (0,...,0,1),e = (2N —2,0,...,0) € (Z")" are lengthN partitions of N and
2N — 2 respectively, with sum of weightsV — 1.

Now consider the outer sum on the right in the identity. Each summand is of the form

M
> (D>W22N_Ma(D) WM Wasy.
DeP(N,M)

Since2N — M = %Y '(2s — 1) D, for eachD € P(N, M), we have

Dg
N-1 N-1
WiNMaD) = [T (WP = I o(d, €)= (d) W (e)
s=1 s=1 \ (d,e)€Q(s)

where the last step is by hypothesis(df e), (d’,e’) € Q(s) then
S(d)W(e) - X(d)W(e') = X(d+d)W(e + €'),

so it follows that every term in the expansion of the sum @ygy), raised to the poweb,, is of
the forme(d, e)X(d)W (e) wherec(d, e) is an integer and., e € (Z*1)* are partitions ok D,
and(2s — 2) D, respectively, with sum of weigh{®s — 1) D;. To calculate the product over
we modify these lengthk partitions by adjoining a furtheV — s zero terms to each. Partitions
corresponding to different values efcan then be added. The sum &f— 1 pairs, one for
each value of, is a pair(d, e) of length N partitions, wherel is a partition o2 'sD, = N
ande is a partition of©'(2s — 2)D, = 2N — 2M, and the sum of weights af ande is
»N-1(2s —1)D, = 2N — M. Before we sum oved, recall that each such term is multiplied
by WM 2Wy1 = W(e*), wheree* € (Z+)N hase: = M — 2,¢%, = 1 and all other terms
0. Thuse* is a lengthN partition of 2M — 2 with weight M — 1. Hence(d,e + €*) is a
pair of length /N partitions of N and2/N — 2 respectively, with sum of weight8NV — 1, so
(d,e+e*) € Q(N). This does not depend explicitly ai/, so the sum oved/ is a sum of
terms of the forme(d, e)X(d)W (e) where(d,e) € Q(N). All coefficientsc(d, e) involve
sums of products of multinomial coefficients and integer coefficients frpmith 1 < s < N,
so everyc(d, e) is an integer. The theorem now follows by induction8n OJ
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For example, the sé&p(4) comprises eight partition pairs, each pair being a ledgtartition
of 4 and a lengtht partition of6, with sum of weightsr. Thusa, W is a sum of eight products
of X;’s andWW,,’s, with coefficients as noted:

(d.e) € Q(4) c(d,e) (d.e) € Q(4) c(d,e)
((0,0,0,1),(6,0,0,0))  +1 ((2,1,0,0),(2,2,0,0))  +6
((1,0,1,0),(4,1,0,0))  —2 ((4,0,0,0),(2,0,0,1)) -1
((0,2,0,0),(4,1,0,0)) -1 ((4,0,0,0),(1,1,1,0))  +5
((2,1,0,0),(3,0,1,0))  —3 ((4,0,0,0),(0,3,0,0)) =5

In particular, the term imv, W, with the largest coefficient iI6X2%, W2 W2, and the term inde-
pendent ofil/y is —5X3W3.

Corollary 3.4. For any positive integetV, there are integerg(d, e) corresponding to pairs
of partitions (d,e) € Q(N) such that the degreeN — 1 homogeneous polynomial WV
variables,

N N

Fn(uy,...,un;v1,...,08) 1= Z c(d,e)HufTijs,

(dve)eQ(N) r=1 s=1

when evaluated at, = ¥, ,1(a),v, = Wi,4(a),1 < r, s < N, takes the value
Fn(Sa(a), ..., Snqa(a); Wa(a), ..., Wayi(a) = ayWa(a)* .

From the2N variablesu,,vs(1 < r,s < N) let us form2N — 1 “rational” variables:

pri=-" (1<r<N) and 7,:= " (1<s<N-1).
Uy U1

ThenFy(uy;vy) = uy = prvy and Fy(uy, ug; vy, v9) = ugvi — udvy = (pa — p?)viv,, whence

Fi(us; F: :
—1(721’/01) =p and Z(ul’flj;’ o1, 2) = (p2 — p})71.
1 1

A corresponding identity can be obtained for ed&Gh Indeed if V > 2 then

N-1
m
ey = Wya+ > [ > (d)a(d) Wit

m=2 \deP(N,m)

by Theoreny 32, whence

2N -2 N_ N-2
Fy(u, ..., un;v1,...,UN) = unv; —wuy vy vy + Ry,
whereRy = Ry(uy,...,uny_1;v1,...,vy_1) IS @ polynomial which does not involve the vari-
ablesu andvy. Now
2N -2 N, N-—-2 N 2N—1
UNvUy —up vy vy = (PN — Py )TN-10] )

whence induction oV utilizing Theoreni 3.2 and Corollajy 3.4 establishes the general identity
for Fyy in Corollary[3.% below. Once again, some additional notation allows us to express the
result compactly. For angt € (Z7)" ande € (Z")"~! we write
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Also for any partition paird,e) € Q(NN) note that the sequena¥ € (Z*)V~! given by
d* :=Qy_1(d + e) is alength\V — 1 partition of N — 1, since

N-1 N

Z rd: = Z(r —1)(d, +e,)

r=1 r=2

N N N
= Zrdr + ZWT — Z(d,. +e,)

r=1 r=1 r=1
—N+(2N-2)—(2N-1)=N —1.

Let P(N) be the set of all lengtliV partitions of V, and for eachd* € P(N — 1), let us
define the subfamily of partition paifg*(d*) := {(d,e) € Q(N) : Qy_1(d +e) =d*}. Then
induction establishes

Corollary 3.5. For any integerN > 2, the polynomialFy satisfies the identity

Fyn(uy, ..o un; v, ..., 0N
< 2N-1 1 ) = Z c(d,e)p(d)T(Qn-1(d +e))
! (d,e)€Q(N)

_ Z fas(p1,. .., pn)T(dY),

d*cP(N-1)

where
fa<(p1,... pN) == Z c(d,e)p(d).
(d,e)eQ*(d*)
In particular we have

fay = p2 — pi,
f(2,0) = QP? — 2p1p2, f(o,l) = pP3— pi’,

f(a,o,o) = 6,0%02 - p% - 50411, f(l,l,o) = 5PZ11 - 3P%P2 — 2p1p3, f(o,o,l) = P4 — Péf

For eachd* € P(N — 1), the polynomialfy4- in the N variablesp,, ..., py has coefficients
which are a subfamily of the coefficients introduced in Theoferh 3.3. Edgh) € Q(N)
determines a uniqud* = Qy_;(d+e) € P(N — 1), so the families{c(d,e) : (d,e) €
Q*(d*)} comprise a partition of the family of coefficients(d, e) : (d,e) € Q(NV)} introduced
in Theoren{ 38. For eacti* € P(N — 1), lete € (Z*)N be such thafly_,(e) = d* and
e1 = YN Thene is alength\V partition of2NV —2 with weight2N — 1, and(d, e) € Q*(d*)

whend = (N,0,...,0). Hencefq- contains the terna(d, e)pl’, and it follows thatfs- is of
degreeN. In particular our earlier calculations show thét (o, ..., pn) = pn — pY¥ when
d* = (0,...,0,1) € P(N — 1), and when evaluated at = ... = py = 1 this polynomial

takes the valué, so the sum of its coefficients (s Then induction establishes

Corollary 3.6. Forany N > 2 and eachd* € P(N — 1), the polynomialfq- (p1, ..., py) is of
degreelN, and the sum of its coefficients(s

Since eaclyy- satisfiesfq:(1,...,1) = 0, itimmediately follows that we have
Corollary 3.7. For any integerN > 2, the polynomialFy (u;, . .., uy; vy, ..., vy) has sum of
coefficients equal td, and in fact satisfies the identifyy (uq, ..., uyn; u1, ..., uy) = 0.
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4. PARTICULAR EVALUATIONS OF THE ASYMPTOTIC EXPANSION

We shall now consider evaluations of the coefficient sequence («i,as,...) of the
asymptotic expansion of the equipoise cufga), for particular choices o4 € (R*)".

First, note thaty_ . (a) = 0 = Wxy(a) for all N > n. This causes no concern if we
use Corollany 3}4 to determiney by evaluatingFy atu, = ¥,41(a),vs = We(a),1 <
r,s < N. On the other hand, it is not immediately obvious how we should use Corfllgry 3.5
to determineny when N > n, since the rational variablg. = u, /v, does not have a stand-
alone value when, = 0,v, = 0. However, for each partition pairl, e) € Q(N) the product
p(d)7(Qy_1(d + €)) contains the factopd 7% T = udrver /v +er which takes the value
whenu, = 0 andv, = 0, since(?,,_;(a) nonzero ensures that = W, (a) is nonzero. Thus,
Corollary[3.% yieldsay as the value oy /v?V ! whenwu, = %,,,(a),v, = Wyi(a),1 <
r,s < N, by noting that the only product-7(d*) that can be nonzero correspond to partitions
d* € P(N — 1) with Qy_,,(d*) = 0.
Example 4.1.1f a € (R™)? with Q,(a) nonzero, it is trivial to verify that the equipoise curve
F;(a) is the straight line) = = + «4, with oy = a; anday = 0for N > 2.
Example 4.2.1f a € (R")3 with Q,(a) nonzero, the equipoise cur/g (a) is a hyperbola
with asymptotey = z + «;. Corollary[3.5 yieldsay as the value offq.-7(d*) for d* =
(N — 1,0, . ,O) < P(N — 1), with the evaluatiorpl = EQ(&)/WQ(&),pQ = Eg(a)/Wg(a)
andr, = Wjs(a)/ Wy(a), noting that any products gk andr, are equal to zero ii; = 0. We
have

ar=p, @y =(p2—p)m, az= (200 = 2pp2)7i, u= (6pip2 — p3 — 5P,
and so on. However we do not explicitly know the coefficientgaf , o . o) in general. Onthe

other hand, Theorem 3.2 conveniently determingsrecursively in this case. In fact, wity
andas as determined above, we have all later terms given by the recurrence

Wia) (=
_ Y sy for N > 3.
anN WQ(a) <S:1 (e o ’

The substitutionsy := —rmay for N > 1 converts the recurrence to a pure convolution
N-1
By = Z BsBn—s for N > 3,
s=1
corresponding to the classical recurrence satisfied by Catalan numbers, but now with initial
conditions3;, = —p17; and 3, = (p? — po)7i. There is an extensive literature on Catalan
numbers. An accessible and readily available discussion is the subject of Chapter 7 of [3].

Introducing the generating function

F(z) =Bz + B +... +Bn2" +...=> B2,
r=1

and lettingZ := 7z, we find thatF" satisfiesF'(z)> — F(z) — Z(p1 + p2Z) = 0, SO

F(z) = 1- \/1+422(p1+p22).

Binomial series expansion now leads to an explicit closed-form solutiofifowhence

N /2]
N—-1 (_1)5 2N —2s—1 N—2s s
— (_ — J for N > 1.
an = (=n) ; 2N—25—1(N—2s,s,N—s—1 Pr— Pz =

J. Inequal. Pure and Appl. Math3(5) Art. 84, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ASYMPTOTIC EXPANSION OF THEEQUIPOISECURVE OF A POLYNOMIAL INEQUALITY 11

Here the quotient of the trinomial coefficient w2l — 2s — 1 can be regarded as a generalized
Catalan number. For example, this explicit solution readily yields

a9 N (T N (5
57T g\5,0,4)P1 7 7\3,1,3)1P2 T 51, 2,212

whenceas = (14p5 — 20p3p, + 6p1p3)71. Note by Corollary 3.6 that eacfy- has coefficient
sum zero, so the generalised Catalan numbers have zero alternating surxfor:

2 e ON — 25— 1 .y
; 2N—2$—1(N—23,$,N—s—1) o
Alternatively, this identity can be deduced from the quadratic identity“for) whenp? = p,.
PuttingZ* := p;7 2 then givest'(2)? — F(z) — Z*(1+ Z*) = 0, and binomial series expansion
of the solution yields the zero alternating sum noted.

Example 4.3.Let us now consider the constant sequemneel € (R*)" in which each term is
equal tol. ThenX, (1) = (7) = Wi(1) for 1 < k < n, so in this case; = 1 and Corollaries
and 3. imply thatty = 0 for N > 2. Hence, as in Example 4.1, the equipoise cutyél )

is the straight line; = x + 1. This is confirmed by noting thak P; (z,1) = (z 4+ 1)" — 2™ and
Si(xz,y) = (2" —y")/(x —y), SOAPy(x,1) = S1(z,y) holds wherny = = + 1.

Example 4.4.Letd:= (01,0, ...,0,) €R™ be a sequence in which every term satisfies< e
for some small strictly positive € R*. Thena := 1+ 6 € (R")" is a small perturbation of
the constant sequengelet > (J) := 1. Then for eactk > 1 we have

k
n—=s n
Yr(1+49) :;(k_8>25(6) and  Wi(1+9) = (k) + Wi (9).
It is convenient to scale the functiobs and W, by dividing by ¥, (1) = W (1) = (’;) when
1 <k<n:forallac (RT)”we define
Yi(a) == Xp(a)/ Xk(1) and Wi(a) == Wi(a)/Wi(1).

(It can easily be shown thai;(a) is the expected value of the product of terms ih-term
subsequence af, andV}!(a) is the expected value of the last term ik-term subsequence of
a.) Itis also appropriate to defirg;(9) = 1. Then forl < k < n the earlier identities become

k
k
S 46) =) (S>z;(5> and  W;(1+6)=1+W(0).
s=0
We keepn fixed and lett — 07, soO(2;(d)) = O(e*) andO(W;(8)) = O(e). In particular,
ap =1+ 25%5(8) — W5 (0) + O(é%).
For any integes > 0, put

v= (1)) (/%)

and for anyd € (Z*)N~! define(d) := IIY;'A%. Now evaluating the coefficienty at
1 + 6 using Corollarie$ 3]4 ar{d 3.5 is convenient so long as we kfapvexplicitly for each
d* € P(N —1). We haveO(fq+) = O(e) because, = 1 + O(e) for 1 < r < n — 1 and fy-
has zero coefficient sum by CoroII.6. As= )\, + O(e) for 1 < s < n — 2, it follows for
N > 2 that

ay= 3 Jalpr- . omMA) + O(E)

d*cP(N-1)
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where

N
fa<(p1,...,pN) = Z c(d, e) (NE{((S) + Zdr [Z’{(é) — W:+1(5)]> + O(é?).
(d,e)eQ*(d¥) r=1
On the other hand, using Theorém|3.2 to evaluateat 1 + ¢ yields «; as above and for
N > 2vyieldsay via the recurrence
N—-2
an ==Y (s+DAan—c— NAy_1 (Z5(0) = W5 (8) + v (E5(8) = Wiy, (6)) + O(2).
s=1
It follows by induction for N > 2 thata, has zero sum for the coefficients of the family of
functionsX;(6) andW}(0) with2 < £ < N + 1.
Note in particular the special case in whidh () = 0,s04, =0for1 <r <n—1and
10,| < €. ThenX;(6) = 6,/n andWi(0) = kd,/nfor2 < k <n,soa; = 1 anday = 0 for
N > 2. Thisis confirmed directly by checking thatP; ,5(x, 1) = (z+1)" — 2"+, (x+1)"!
andSy s(z,y) = (z" —y")/(x — y) + §,y" ! are equal precisely when=z + 1.

5. SELECTED INEQUALITIES

To conclude, let us briefly sample some of the inequalities between the polynaxiig(s, 1)
andS,(z,y) which are consequences of the preceding asymptotic analysis.
Casel.a=1 € (R")" withn > 2.
In this case the equipoise curveris= = + 1, and simple but elegant inequalities are already
implied by Theoremis 2|2 ad 2.3. For instanté (1,1) = 2" —1andS;(1,3) = (3" —1)/2.
The point(1, 3) lies above the equipoise curve, so is in ffixeegion, and Theorefn 3.2 implies

3" -1
2

Indeed, the lineg = x + 2 andy = x + % lie, respectively, in th&-region and the\ P-region,
so forx > 0 we have

1” 1" — +2n_n
( )_In<<x+> (2ot

2" —-1<

S 2 1
These inequalities would usually be deduced from the convexify-efz™, and actually hold
for all z € R whenn is even.

Sincea; = 1 anday,; = 0for N > 1 whena = 1, less familiar inequalities can be derived
by noting that the curveg= z+1+2"" andy = z+1 -z~ lie, respectively, in the&-region
and theA P-region whenN > 1. Thus forz > 0 we have

(x+1—LN)n—x” (x+1+LN)n—x”
g <(z+1D)"—-2"< g
1- X ( ) 14+ %
Once again these inequalities could be deduced from convexity=0f:", but now their form
is more naturally suggested by the asymptotic expansion of the equipoise curve.

Case 2.a=1+0 € (R")" withn > 3, and there is some small strictly positivec R* such
that|d,| <eforl <r <n.

Let us consider the special case in whigh= —¢, 6, = e andj, = 0for2 <r <n — 1. Then

n n

APy s(2,1) = (z+1)"—a2"—E(x+1)"% and Syis(z,y) = Y +e(y™t —a"h).

y—x
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In this casex;(d) = 0,35(5) = —2¢/n(n —1),X5(6) = 0for3 < k < n,andW; () = ke/n
for 2 < k < n. From Examplé¢ 4}4 we have
2 n—2
ay ne—l—O(e ), Qo ™ e+0(e), a3 18 e+ 0(e)
Thena, > 0 andas < 0, so the curvey = z + oy andy = o + a; + axx ! lie, respectively,
below and above the equipoise curve for sufficiently largelence
(x 4+ o)™ — 2"

651

(n+1)(n —2)

+ € [(w +ay)" T — x”_l}

<(@+1)"—a"—(x+1)"2

(z+ a1 +2)" —an [ ag\n~1
< = +e€ (m—i—al—l——) -z ,
041—|—72 T

wherea; anda, take the exact values

_ G- (B = =2 —at[(5) + (")
ap = and Qg = .
(5) + (n—1)e (5) + (n—1)e
Case 3.a:= (a,b,c) € (R")3 with Qy(a) = (b, c) # (0,0).
As shown in Example 4]2, fav > 1 eachay is a function ofp,, p» andr in this case. It = 0,
we easily verify thatv; = a anday = 0 for N > 2. Now suppose > 0. Thenp,, p, andn;
have stand-alone values, angl = 0 precisely wherm, = p?. But thenay = 0 for N > 2, by
the previously noted alternating sum identity for the generalised Catalan numbgss> Ip?
thenay > 0 and the summation identity fary in Exampl implie$—1)Yay > 0, soay
alternates in sign folv > 2. Similarly if p, < p? thena, < 0 anday alternates in sign for
N > 2.Asin Cas{lz above we can deduce relevant inequalities. In particutarsifp? then
for sufficiently larger we have

az® +bx(z + ay) +c(z +a1)? < (z +a)(x +b)(z +c) — 2°

2 (8% a9\ 2
< ax® + bx <x+a1—|——) +c<x+a1+—> ,
x T
wherea; anda, have their exact values, given explicitly in Examiple| 4.2.
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