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1. Introduction

We consider the third-order nonlinear ordinary differential equation,

(1.1) r+ f(z,2,2)E + g(x, &) + h(z, 2, %) = p(t, v, T, Z)

or its equivalent system

Ultimate Boundedness

(12) I:y, y:Z, z= —f(xa?J,Z)Z—g(%?/) —h(%y, Z)+p(t7xaya Z), of Solutions
M.O. Omeike

wheref, g, h andp are continuous in their respective arguments, and the dots denote vol. 9, iss. 1, art. 15, 2008
differentiation with respect té The derivatives
0 0 : Oh(x,y, i
WELD) _ py), POV ey, POBD ) THbIFeE:

Oz 0z Oz Contents
Oh(x,y,2) _ Oh(r,y,2) _ dg(z,y) _
0—3/ = hy(z,y, 2), —>, = h.(z,y,z) and o = 9z(2, ) % <
exist and are continuous. Moreover, the existence and the uniqueness of solutions of < 4

(1.7) will be assumed. Itis well known that the ultimate boundedness is a very impor-
tant problem in the theory and applications of differential equations, and an effective
method for studying the ultimate boundedness of nonlinear differential equations is Go Back
still the Lyapunov’s direct method (seg| - [8]).
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the following result was proved. Close
Theorem A (Tunc [?]). Furth.e.r to the as;umptions on the functiofig;, h aryd journal of inequalities
p assume the following conditions are satisfiedb, ¢, [, m and A— some positive in pure and applied
constants): mathematics

. i ¢ 1443-575k
() f(z,y,2) > aandab—c > 0forall z,y, z; =

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:moomeike@yahoo.com
http://jipam.vu.edu.au

(i) 222 > pforall 2,y # 0;

(i) 2229 > ¢ for all  # 0;

(iv) 0 < hy(x,y,0) < ¢, forall z,y;

(V) hy(z,y,0) > 0forall z,y;

(Vi) h.(x,y,0) > mforall z,y;

i) yfe(z,y,2) <0,yf.(z,y,2) > 0andg,(z,y) <0forall z,y, z;
(viii) yzhy(z,y,0) + ayzh,(z,y,z) > 0forall z,y, z;

(iX) |p(t,z,y,z)| <e(t)forallt > 0,z,v, z,

Wherefot e(s)ds < A < oo.

Then, given any finite numbers, yo, 2o there is a finite constarid = D(xy, yo, 20)
such that the unique solutiofx:(t), y(t), z(t)) of (1.2) which is determined by the
initial conditions

2(0) =z,  y(0)=v,  2(0) =2

satisfies
lz(t)| < D, ly(t)] < D, z2(t)| <D

forall ¢t > 0.

Theoretically, this is a very interesting result sinéel) is a rather general third-

order nonlinear differential equation. For example, many third order differential

equations which have been discussedirafe special cases of EdL.(), and some

known results can be obtained by using this theorem. However, it is not easy to apply
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TheoremA to these special cases to obtain new or better results since Théorem
has some hypotheses which are not necessary for the stability of many nonlinear
equations. The Lyapunov function used in the proof of Theoteis not complete
(see B]). Furthermore, the boundedness result considered]irs [of the type in
which the bounding constant depends on the solution in question.

Our aim in this paper is to further study the boundedness of solutions of B. (
In the next section, we establish a criterion for the ultimate boundedness of solutions
of Eq. (L.1), which extends and improves Theorém

Our main result is the following theorem.

Theorem 1.1. Further to the basic assumptions on the functiging, » and p as-
sume that the following conditions are satisfiedi( ¢, v and A— some positive con-
stants):

() f(z,y,2) >aandab—c > 0forall x,y, z;

(i) 222 > pforall 2,y # 0;
(iii) M2 >y for all - # 0;
(iv) hy(z,0,0) <e¢, hy(x,y,0) > 0andh,(z,0,z) > 0forall z,y, z;
V) yfe(z,y,2) <0,yf.(z,y,2) > 0andg,(z,y) <0forall z,y, z;
i) |p(t,z,y,2)| < A< ooforall t > 0.

Then every solution(t) of (1.1) satisfies
(1.3) lz@)| <D, &) <D, [i@)]<D

for all sufficiently larget, whereD is a constant depending only anb, ¢, A andwv.
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2. Preliminaries

It is convenient here to consider, in place of the equation) (the system1.2). Itis
to be shown then, in order to prove the theorem, that, under the conditions stated in
the theorem, every solutia:(t), y(¢), z(t)) of (1.2) satisfies

(2.1) [z <D, y®| <D, |2 <D

for all sufficiently larget, whereD is the constant inl(.3).
Our proof of ¢.1) rests entirely on two properties (stated in the lemma below) of
the functionV = V (z, y, z) defined by

(2.2) V=V +Vs,
whereV;, V5 are given by

T Y Yy
@3a) 2Vi =2 [ 1(€,0,0¢+2 [ nf(e.n.00dn+25 | gl
0 0 0
+ 022 + 2yz + 26yh(x,0,0) — afy?,
x y
(2.3b) 2V, = afbz? + 2a/ h(£,0,0)d¢ + 2a/ nf(x,n,0)dn
0 0
)
+ 2/ g(x,n)dn + 2* + 2aaBxy + 2abxz + 2ayz + 2yh(x,0,0),
0

Wherei <0< g, anda, § are some positive constants such that

ab — ¢ '1_a5—1. v(ad —1)
B {CL—FV_l <M _b)ﬂ ‘a’ abd CB[f(w,y,2) —al?

a < min

Y
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andg will be fixed to advantage later.

Lemma 2.1. Subject to the conditions of Theoréni, V(0,0,0) = 0 and there is a
positive constanD; depending only on, b, ¢, « and such that

(2.4) V(z,y,2) > Dy(2? 4 y* + 22)

for all z,y, z. Furthermore, there are finite constants, > 0, D3 > 0 dependent
only ona, b, ¢, A, v, §, anda such that for any solutiofz(¢), y(t), z(t)) of (1.2),

: d
provided thatr? + % + 22 > Ds.

Proof of Lemm&2. 1. To verify (2.4) observe first that the expressioisd) defining
2V1, 2V, may be rewritten in the forms

MF

2V; = {2/xh(§,0, 0)d¢ — %h2(x,0,0)} +6b {y—i— -
0

Yy
+ {2/ nf(x,n,0)dn — o6~ 'y? — aﬁyQ} +0(z 4+ 6 1y)?
0

+0 {2/Oyg($7n)dn - byz}

2Vo = af(b — af)x® +a {2 /x h(&,0,0)dé — B~ h*(x, 0, 0)}
0

and

+ 0 {a‘éy + ﬁ—la%h(x, 0, O)}2 + {2 /yg(x, n)dn — ﬁa—lyz}
0
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+a {2/ynf(:v,n,0)d77 - ayz} + (afx 4 ay + z)*.
0

The term2 [" h(¢,0,0)dé — 2h*(x,0,0) in the rearrangement far; is evidently
equal to

v ) )
2/0 {1 — Ehg(f,(),())} h(£,0,0)dE — Efﬂ(o,o,()).

Ultimate Boundedness

By conditions (iii) and (iv) of Theorem.1andh(0,0,0) = 0, we have MfZ'O‘k
* 5 5 (5 vol. 9, iss. 1, art.
2/ {1 - Ehf(§7 07 0)} h(f, 07 O)dg - EhQ(O, 0, 0) Z (]_ - EC) l/fL‘Q_ 9, L art. 15, 2008
0
In the same way, using (iii) and (iv), it can be shown that the term Title Page
{2 / h(€,0,0)ds — ﬁth(x,0,0)} Contents
0 <« >
appearing in the rearrangement #f;, satisfies < >
{2 JRE ﬁ1h2<x,o,o>} > (1 - 5) va?, Page 801 15
’ Go Back
for all z.
Since "2 >y (y # 0), 420 > (y % 0) and f(z,y,2) > a, and Full Screen
combining all these withA.2), we have -
ose
2V > {y (1 - éc) +af(b—af) + av <1 — E) } z? journal of inequalities
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for all z, y andz. Hence if we choos@ = ab the constant$ — %c, b—af,1— g,

a — % — af andb — § are either zero or positive. This implies that there exists a
constantD; small enough such that () holds.

To deal with the other half of the lemma, let(¢), y(¢), z(¢)) be any solution of
(1.2) and consider the function

V(t) =V (x(t),y(t), 2(1)) -
By an elementary calculation using.p), (2.2) and ¢.3), we have that

(2.6) V= (1+0)y / el mdn + (1 + a)y / ", 0y

1+ a){f(x,y, z) ; f(x,y,())}yzz a4 a){h(m,y,z) ; h(ac,O,O)}y2
. (1 + (5) {h(x,y,z) ; h(x’()?O)}ZQ o aﬂh(x;;%Z)IZ o g(xya y)y2

=~ a0 2 (2,0,0)9 + ha(2,0,0)52 + aafy?
Y

—5f(x,y,z)22—[f(x,y,z)—a]z2+22—aﬁ{g(xy’y>—b}xy
—aﬁ{f(x,y,z)—a}x2+{aﬁx+(1+a)y+(1—|—(5)Z}p(t,:c,y,z).
By (v), we get
 gulmdn <0, " ol 0)dn < 0.
yfog(xn)n< y/Of(xn)nn<

It follows from (v), for z # 0 that
Wl _ a{f(xay7z> B f(xay70)}

z

yZQ = (lfz(l'7 Y, 012’>y22 Z 07
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0<6; <1butW; =0whenz = 0. Hence

Wy >0 for all z,y,z.
Similarly, it is clear that

h(z,y,z) — h(x,0,0
Wgz{( Y )y ( )}yQZhy(:cﬁzy,O)yQEO,
0 <6y <1butW, =0wheny = 0. Hence

Wy >0 for all x,y.
Also,
W3 _ {h($7y7z) - h($7070)} 2

22 = h,(2,0,032)2* >0,
z
0 <60; <1butWs =0whenz = 0. Hence

W3 >0 for all x,z.
Then, combining the estimaté@s,, W, W5 and (iii) with (2.6) we obtain
V < —afva? — (ab— ¢ — afa)y® — (b — dc)y* — (ad — 1)2>

—az’ —af {g(a; y) — b} xy —af{f(z,y,z) —alzz
+{afr+ (1 +a)y+ (1+9)z}tp(t,z,y,2)

1 ) ~1 (9(zy) 112
—§aﬁl/m —{ab—c—aﬁ a-+v (T—b> ]}y

— (b—dc)y* — {a(S —1—apv f(z,y,z2) — a]z} 22 — az?
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_ iag,/ { {x Tyt (@ - b) y] 2 + [z + 207 (f(zy,2) — a)Z}Q}

+{afr+ (1 +a)y+ (1406)z}p(t,z,y,2).

If we choose
, ab — ¢ 1 ad—1 v(ad —1)
o a abs Blf ey 2) —al [
—1 { g(zw) a a z,Y,2) —a
ﬁ{a%—u 1( m —b>}

it follows that
V< —%aﬁyﬁ —(b—=dc)y* — a2 + {apr+ (1 +a)y+ (1 +6)z}p(t,x,y, 2)
< —Da(2® +y* + 2%) + Ds(lz] + [yl + |2]),
where
D4:min{%aﬂy;b—§c;a}, D5 = Amax{af;1+a;1+d}.
Moreover,
(2.7) V < —Dy(a® + 3 + 2%) + Do(a® + 12 + 2%)2,

whereDg = 32 D;. 1
If we choose(z? + % + 2%)z > D; = 2DgD; !, inequality ¢.7) implies that

. 1
V< —§D4(1‘2 + %+ 2%).
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We see at once that .
V S _D87

provided that:® + 2 + 22 > 2Dg D, *; and this completes the verification 6f.§).
O
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3. Proof of Theorem1l.1

Let (z(t),y(t), 2(t)) be any solution of{.2). Then there is evidently & > 0 such
that
#*(to) + y”(to) + 2*(to) < Ds,

whereDs is the constant in the lemma; for otherwise, that is if
22 (t) + 2 (t) + 22(t) > D3, t>0,
then, by £.5), ‘
V(t) < =Dy <0, t=>0,

and this in turn implies that' () — —oo ast — oo, which contradicts®.4). Hence
to prove (L.3) it will suffice to show that if

(3.1) 22 (t) + 2 (t) + 22(t) < Dy for t=T,

whereDy > Dj is a finite constant, then there is a constéymg > 0, depending on
a,b, c,d,  and Dy, such that

(3.2) () + 2 (t) + 22(t) < Dy for t>T.

Our proof of 3.2) is based essentially on an extension of an argument in the proof
of [8, Lemma 1]. For any given constant> 0 let S(d) denote the surface:? +y*+
2% = d. Becausé/ is continuous inr, y, z and tends tet-oco asz? + % + 22 — oo,
there is evidently a constant;; > 0, depending oDy as well as om, b, ¢, d anda,
such that

3.3 min Vir,y,2z) > max V(x,y,2).
( ) (l’,y,Z)ES(D11) ( y ) (fL’,y,Z)ES(Dg) ( y )
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It is easy to see fronB(1) and (3.5) that

(3.4) 22 (t) +y*(t) + 22(t) < Dy, for ¢t >T.

For suppose on the contrary that there issa7 such that
2(t) + y*(t) + 2°(t) > D

Then, by 8.1) and by the continuity of the quantities$t), y(¢), z(¢) in the argument
displayed, there exist, to, T' < t; < t5 such that

(353) xQ(tl) + y2(t1) + Z2<t1) = Dg,

(35b) $2(t2> + yQ(tQ) + 22<t2) = Dll

and such that

(3.6) Dy < 2%(t) + y*(t) + 2%(t) < Dy1, t, <t <ty

But, writing V' (t) = V (x(t), y(t), 2(t)) , sinceDy > Ds, (3.6) obviously implies [in
view of (2.5)] that

V(tg) < V(tl)
and this contradicts the conclusion [from¥) and @.5)]:

V(tg) > V(tl)
Hence 6.4) holds. This completes the proof df.(), and the theorem now follows.
Remarkl. Clearly, our theorem is an improvement and extension of Thedgrem
In particular, from our theorem we see that (viii) assumed in Theoters not
necessary, and (iv) and (ix) can be replacedbir, 0,0) < ¢ and (vi) of Theorem
1.1respectively, for the ultimate boundedness of the solutions of Ed). (
Remark2. Clearly, unlike in [], the bounding constan in Theoreml.1 does not
depend on the solution of (1).
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