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Best constant, Geometric inequality, Euler’s inequality.

We determine the best constaitfor the inequality ; + | + 1 + ; >

m; wherez,y,z,t > 0;x +y+ 2+t = 1. We also consider
an analogous inequality with three variables. As a corollary we establish a re-
finement of Euler’s inequality.
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1. Introduction

Recently the following inequality was proved, P):

1 1 1 25
1.1 .,
(3.1) x+y+z_1—|—48xyz’

wherex, y, z > 0; z +y+ z = 1. This inequality is the special case of the inequality
1 1 1 A
>

1.2 -4+ -4+ -
(1.2 x+y+z_1+3()\—9)xyz’

whereX > 0. Substituting in this inequality = y = 1, = = 1 we obtain0 <
A < 25. So\ = 25 is the best constant for the inequality.). As an immediate
application one has the following geometric inequal8 [

(@a—0)2+(b—c)*+ (c—a)?
(a+b+c)?

whereR andr are respectively the circumradius and inradius, @ridc are sides of
a triangle, and\ < 8. Substitutings = b = 3, ¢ = 2 and the corresponding values
R = %ﬁ andr = \/% in (1.3) we obtain\ < 8. So\ = 8 is the best constant for the
inequality (L.3), which is a refinement of Euler’s inequality.

It is interesting to comparel(3) with other known estimates (§ For example,
it is well known that:

Y

(1.3) LW
T

(a+b)(b+c)(c+a)
4abc '

For the triangle with sideg = b = 3, ¢ = 2 inequality (L.3) is stronger thanl(.4)
even for\ = 3. But for A\ = 2 inequality (L.4) is stronger than1(.3) for arbitrary

(1.4) §

>
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triangles. This follows from the algebraic inequality:

(x+y)ly+2)(z+ ) - 3(x% +y? + 2%)

15
(1.5) 8ryz T (r4y+2)?

wherezx, y, z > 0, which is in turn equivalent tol(1).
The main aim of the present article is to determine the best constant for the fol-
lowing analogue of the inequality. (2):

1 1 1 A

1
1.6 - .
(1.6) sy I T T T 60 — 16)ayat

wherez,y,z,t >0;x+y+ 2+t =1.
It is known that the best constant for the inequality

1 1 1 1 16 — A
1.7 -+ - - <A+ —
(3.7) x+y+ +t_ +256:cyzt’
wherez,y,z2,t > 0;x+y+z2+t=1,iISA = % (see e.g.4, Corollary 2.13]). In
[4] the problem on the determination of the best constants for inequalities similar to
(1.7), with n variables was also completely studied:

zn:l<A+ =

n
— nl_[zlacZ

wherexy, zo,...,2; > 0, > x; = 1. The best constant for this inequality is
A=n?— # In particular ifn. = 3 then the strongest inequality is

+-+

1
z

8| =
NS
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wherezx,y,z > 0, x + y + z = 1, which is in turn equivalent to the geometric
inequality

p? > 16Rr — 512,

wherep is the semiperimeter of a triangle. But this inequality follows directly from
the formula for the distance between the inceritand the centroid~ of a triangle:

1
1G] = §(p2 + 512 — 16Rr).

For some recent results se®,[[6] — [8] and especially9].
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2. Prelimary Results

The results presented in this section aim to demonstrate the main ideas of the proof
of TheorenB3.1in a more simpler problem. Corollaries have an independent interest.

Theorem 2.1.Letz,y,z > 0 andz + y + z = 1. Then the inequalityl( 1) is true.
Proof. We shall prove the equivalent inequality

111
—+ -+ - +48(zy +yz + 2x) > 25.
r Yy =z

Without Ioss of generality we may suppose that y < if Indeed, ifx +y > 31 ,

y+z> %, 24x > 5= then by summing these inequalities we obtair

which is false.
Let

f’

1 1 1
flw,y,2) = — 4+ — + — +48(xy + yz + 2x).
r oy =z

We shall prove that

flz,y,2) > f(“y x;y )225.

The first inequality in this chain obtains after simplifications, the f(:grt_P xy(x+
y), which is the consequence oft y < f Denoting™}¥ = ¢ (z = 1 — 2() in the
second inequality of the chain, after some simplification, we obtain

1440* — 1680° + 730 — 140 +1 > 0 <= (30 — 1)*(40 — 1)* > 0.
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Corollary 2.2. Letx,y, z > 0. Then inequality 1.5) holds true.

Proof. Inequality (L.5) is homogeneous in its variablesy, . We may suppose,
without loss of generality, that + y + z = 1, after which the inequality obtains the
following form:

TY + Yz + 2xr — rYz

> 24(1 — 2(xy + yz + 2x))

TYZ
1 1 1
= —+ -+ - —12>24—48(xy + yz + zx).
T Yy =z
By Theorem2.1the last inequality is true. O]

Corollary 2.3. For an arbitrary triangle the following inequality is true:
AV AV N2
522+8(a b+ (b—c¢)* + (c a)'
r (a+ b+ c)?
Proof. Using known formulas

abc S
S=Vr—ap-blp-c, R=-_5 1= =
whereS andp are respectively, the area and semiperimeter of a triangle, we trans-
form the inequality to

2abc - 18(a® + b* + ) — 12(ab + bc + ca)

(a+b—c)b+c—a)(c+a—0b) — (a4 b+ c)?

Using substitutionss = = +vy, b = y + 2, ¢ = z + x, wherexz, y, z are positive
numbers by the triangle inequality, we transform the last inequality to
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3. Main Result

Theorem 3.1. The greatest value of the parameterfor which the inequality

1 n 1 n 1 N 1 S A
r oy =z t 1416(\—16)xyzt’
wherez,y, z,t >0,z +y+ 2+t =1,istrueis Best Constant For An
Algebraic Inequality
582\/97'—-2054 Y.N. Aliyev
A= 121 ) vol. 8, iss. 3, art. 79, 2007

Proof. Substituting in the inequalityl(6) the values

Title Page
5+ V97 19 — /97
TEY=E= 7 t= 24 ’ Contents
we obtain, <« >
A< A= 58297 — 2054. p R
121
We shall prove that inequality.(6) holds forA = . Page 8 of 13
Without loss of generality we may suppose_t_bratg y < z < t. We define Go Back
sequences$z, }, {y.}, {z.} (n > 0) by the equalities
Full Screen
To =2, =Y, 2=z,
’ Yo Y ’ Close
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wherek > 0. From these equalities we obtain,

r+y+z 2z2—x— 1\"
ytz y< )

Yn =773 3

2

wheren > 1. Then we have,

: rT+y+=z
limy, = ——.
3

Sincersg, = w1 = Yor_1 and 2911 = 29, = Yo fOr k > 0, then we have also,
(3.1) limzx, =limz, =limy, = #
We note also that,
3.2 3 t) < .
(3:2) (9 +0) < 5

Indeed, on the contrary we have,

(x+y)(z+1t)>° > (x+y)>(z+1t) >

Ao — 16’
from which we obtain,
2 2
(x+y)(z+1)° > T

Then .

1 (+y) +(z+1) 2 2 1

= >

G ( 5 > (x+y) (2 +1) >)\0—16’
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which is false, becausg < 32. Therefore the inequality3(?) is true. In the same
manner, we can prove that

(3.3) (x+2)%y+1) < 16

Let

11 1 1
flz,y,z,t) = i ; toto T 16(Ag — 16)(2yz + ayt + w2t + yzt).

Firstly we prove that
(34) f(x7y727t> = f(x07y07 ZO7t) Z f('rlaylwzht)

1 1
= — + — +16(N\o — 16)xy(z + t)
r oy

4 r+y ?
> 1 -1
_a:+y+ 6(Xo 6)( 5 ) (z+1)

>4 t
S 6 zy(z +y)(z +1),

Best Constant For An
Algebraic Inequality

Y.N. Aliyev
vol. 8, iss. 3, art. 79, 2007

Title Page
Contents
44 »»
< >

Page 10 of 13

which follows from @.2). Go Back
Since for arbitraryn > 0 the inequalityz,, < vy, < z, < tis true then in the Full Screen
same manner we can prove that
Close
(3.5) f(@on, Yok, 22k, t) > f(Tors1, Yort1, Z2e41, 1),
journal of inequalities
wherek > 0.

in pure and applied
mathematics
issn: 1443-575k

We shall now prove that

(3.6) f(Tokt1s Yokr1, 22641, 1) > f(@okto, Yort2, Zokt2, ),

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:yakubaliyev@yahoo.com
http://jipam.vu.edu.au

wherek > 0. Denoter’ = xop11, ¥ = Yor41, 2 = 22141, t' = t. By analogy with
(3.9 we may write,

(x’+z’)3(y’+t') <

~ X — 16
Sincex’ = ¢/ then we can write the last inequality in this form:
37 / N3/ t/ < )
(3.7) 0+ 76 +1) <

Similar to (3.4), simplifying (3.6) we obtain,

>4// / !/ / t/
i 2 W ) ),

which follows from @3.7).
By (3.4) — (3.6) we have,
(3'8) f(x’y7 Z7t) Z f(xnvynaznat)v

for n > 0. Denote/ = **= thent = 1 — 3(. Sincef(z,y, z,t) is a continuous
function forz, y, z,t > 0, then tending: to oo in (3.8), we obtain, by §.1),

(3.9 flzyy,z,t) > Hm f(zn, Yn, 20, t) = f(£,0,0,1 — 30).
Thus it remains to show that
(3.10) f,0,6,1—30) > .

After elementary but lengthy computations we transfofmi @) into
(40 —1)* ((Ag — 16)£(3¢ — 1)(8¢ + 1) 4+ 3) > 0,
where0 < ¢ < 3. It suffices to show that
-3

o= 16< gy I
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for 0 < ¢ < 3. The functiong(¢) obtains its minimum value at the point

ST (1),

0. -
72 ’

0 =1y 3

at whichg(4y) = A\ — 16. Consequently, the last inequality is true.
From (3.9) and (.10 it follows that
1 1 1 1 Ao

Sy 44>
$+y+z+t_1+16()\0—16)xyzt’

and the equality holds only for quadruplé$, 1,1, 1), (¢y, lo, 0o, 1 — 3(y) and 3
other permutations of the last.
The proof of Theoren®.1is complete. O

Remarkl. An interesting problem for further exploration would be to determine the
best constank for the inequality

n

1 S A
z; — 14+nn 2N —n?) ][,z

i=1

wherezy, zg,...,z, > 0, > " x; = 1, forn > 4. It seems very likely that the
number

12933567 — 930931/22535 17887113 4 56021122535 , 288017
— a o =
4135801 996728041 17161’

wherea = /8119 + 481/22535, is the best constant in the case-= 5. For greater
values ofn, it is reasonable to find an asymptotic formula of the best constant.

A
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