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ABSTRACT. In the article "N. Ujeve, A generalization of the pre-Griiss inequality and appli-
cations to some quadrature formulde|nequal. Pure Appl. Math3(2), Art. 13, 2002” error
bounds for some quadrature formulae are established. Here we prove that all inequalities (error
bounds) obtained in this article are sharp. We also establish a new sharp averaged midpoint-
trapezoid inequality and give applications in numerical integration.
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1. INTRODUCTION

In recent years a number of authors have considered error inequalities for some known and
some new quadrature rules. For example, this topic is considered in[[1] — [€] &nd [11] — [14].

In this paper we consider the midpoint, trapezoid and averaged midpoint-trapezoid quadrature
rules. These rules are also considered in [12], where some new improved versions of the error
inequalities for the mentioned rules are derived.

Here we first prove that all inequalities obtainedlin![12] are sharp. Second, we specially
consider the averaged midpoint-trapezoid quadrature rulé. In [6] it is shown that the last men-
tioned rule has a better estimation of error than the well-known Simpson’s rule and in [13] it
is shown that this rule is an optimal quadrature rule. We give a new sharp error bound for this
rule. Finally, we give applications in numerical integration.
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2. MIDPOINT INEQUALITY

Let / C R be a closed interval and b € Int 7, a < b. Let f : I — R be an absolutely
continuous function whose derivatiyé € L,(a,b). We define the mapping

{t_2a3+b, te [a, 222]

(e (o2

O(t) =

such thatb,(t) = (t)/ ||®||,, where

b DAY
ol = [ o= 0

We have

b
Q(f:a,b) = / Do(t) ' ()dt

= () a0 -2 [ o]

In [12] we can find the following midpoint inequality

a b — )32
(2.1) ‘f( ;b) v-a- | f(t)dt‘ < %a,
where
@2 ¢ - {uf'ui HOZTO 070, b>12} .

Proposition 2.1. The inequalityl) is sharp in the sense that the cons%gtcannot be
replaced by a smaller one.

Proof. We first define the mapping
12, te ]
(2:3) =3,
stP—t+3, te(3.1]
and note thay is a Lipschitzian function.
On the other hand, each Lipschitzian function is an absolutely continuous function [10, p.

2217].
Let us now assume that the inequallty {2.1) holds with a constasto, i.e.

a+b b
@4) (50 o-a- [ o
where( is defined by[(2]2). Choosing= 0, b = 1 and f defined by[(2.B), we get

! 1 1 1
/O f(t)dt—ﬂ, f<§> =3
such that the left-hand side ¢f (2.4) becomes

1
(2.5) L.H.S. =5

We also find thaC’, = ;1= such that the right-hand side .4) becomes

(2.6) R.H.S. = %
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From ) —) we gef' > 1=, proving that” = ;1 is the best possible i.l). O
3. TRAPEZOID INEQUALITY

Let / € R be aclosed interval and b € Int 7, a < b. Let f : I — R be an absolutely
continuous function whose derivatiyé € L,(a,b). We define the mapping

{t—Bagb, t € [a, ]

t — asz, t c (a+b bi|

x(t) =

such thatyo(t) = x(¢)/ [l xl|,. where

Il = [ oxtoae = o

We have

b
P(f:a,b) = / Yolt) (1)t

= [rwar () s -5 [ roa].

In [12] we can find the following trapezoid inequality:

3/2
(3.1) ‘f + f(0) /f dt‘ f) .
where
32) C; - {uf'ui——[f W= Sl iy wf} .

Proposition 3.1. The mequallty.l) is sharp in the sense that the consfgatcannot be
replaced by a smaller one.

Proof. We define the mapping
1 1
3.3 t) = —t* — ~t.
(3:3) 1) =5t =5
It is obvious thatf is an absolutely continuous function. Let us now assume that the inequality

(3.7) holds with a constardt > 0, i.e.

whereC; is defined by[(3.2).
Choosingn = 0, b = 1 and f defined by[(3.8), we get

/Olf(t)dt:% and £(0) = (1) =0,

Thus, the left-hand side df (3.4) becomes

1

The right-hand side of (3.4) becomes

(3.6) R.H.S. - %
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From ) —) we gef' > 1=, proving that; - is the best possible i.1). O

4. AVERAGED MIDPOINT-TRAPEZOID INEQUALITY

Let / C R be a closed interval and b € Int I, a < b. Let f : [ — R be an absolutely
continuous function whose derivatiyé € Ly(a,b). We now consider a simple quadrature rule
of the form

(4.1) ””f( IREIONS /f

:%{f<a—2kb>+f( );rf(b)] (b—a)—/abf(t)dtz

It is not difficult to see thaf (4]1) is a convex combination of the midpoint quadrature rule and

the trapezoid quadrature rule. [0 [6] it is shown that](4.1) has a better estimation of error than
the well-known Simpson’s quadrature rule (when we estimate the error in terms of the first
derivative f’ of integrandf). In [12] the following inequality is proved

atb )32
(4.2) ‘f<)+2f€l )+f /f t)dt (b \/2 Cs,

where

Proposition 4.1. The inequality) is sharp in the sense that the consfgatcannot be
replaced by a smaller one.

Proof. We first define the mapping
1 1 1
{ 12— 1, te [0,3]
1 3 1
PP—3t+1, te

and note thay is a Lipschitzian function.
Let us now assume that the inequallty {4.2) holds with a constasto, i.e.

fa) +2f (“£2) + f(b)
y /f t)dt

whereCs is defined by[(4]3). Choosing= 0, b = 1 and f defined by|[(4.4), we get

1 1 ]
[ = s = s =1 (3) =0
such that the left-hand side ¢f (#.5) becomes

1
(4.6) L.H.S. =&

(4.4) ft) =

(4.5) < O(b—a)®?Cs,

We also find thaCs = ;2= such that the right-hand side .5) becomes
C

4.7 R.H.S.(4.5) = ——.

@) 3 - 1=

From (4.%) — )We get’ > =, proving thatC' = 4L is the best possible in (4.2). O
f V3
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5. A SHARP ERROR INEQUALITY
In [12] we can find the following inequality

(5.1) S(f,9)? <S(f,1)S(g.9),

where
62 S(f.g) = [ swgar - [ s [ g

b b
—@ | s [ gy
andV satisfies

b
(5.3) / U(t)dt =0,
while
b
v = [ v

In [14] we can find a variant of the following lemma.
Lemmab.1.Letf € C'[a,c], g € C* [c,b] be such thaff (c) = g(c). Then

f(t), tela,c

wy = { 1O teled

g(t), te€cb]

is an absolutely continuous function.

Theorem 5.2.Let f : [0,1] — R be an absolutely continuous function whose derivafive
Ly(0,1). Then

[ =3 [0 +21 (3) + 50 |

< 4—%\/||f’||2 ~2r(3) - f<o>]2 ~2|f - 1 (%)}

The inequality) is sharp in the sense that the congﬁintannot be replaced by a smaller
one.

(5.4)

Proof. We define the functions

t—1 tefol)
(5.5) p(t) ={ \ 12
t—3, tels1]
and
t, telo,i
(5.6) U(t) = 0.2)
t—1, te[3,1]
It is not difficult to verify that
1 1
(5.7) /p@ﬁz/@@ﬁz&
0 0
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We also have

58) ol = [ # 0yt = g5
2 ', 1

(5.9) v = / V(1) = o
! 1

(5.10) /0 PO (t)dt = .

From (5.1),[(5.R) and (5]3) we get

1
v

< [pr - ([ werwioar)
. [Hf’I\Q ([ f'<t>dt)2 -

1 2
( / f’(t)\I!(t)dt) ] |
0
Integrating by parts, we obtain

(5.12) /Olp(t)f’(t)dt: /0é (t— i) f’(t)dt+[ (t— Z) F(8)dt

1027 (3) + f(:)] - [ sa
and

(5.13) /1f’(t)\11(t)dt=/th’(t)dH[(t—1)f'(t)dt

0

1 -
=/ (5) —/ f(t)dt.
0
We introduce the notations

(5.14) - / e,
0

/Olp(t)lll(t)dt/ol f’(t)\I/(t)dtr

2

(5.11) { /0 D0 (1)t~

1
1w

A

(5.15) q= 411 [f(O) +2f (%) +f(1)] :
From (5.11) —[(5.15) andl (5.8) - (5]10) it follows that

(5.16) [(q 1) —i <f G) - Z)r

<o lllf’||2 - ) = FO)F ~ 12 (f (%) ) ) ]
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or

617 20+ 3¢+ 0 10 151 +16 (1 () 27 (3) a0

If we now introduce the notations

(5.18) B = -2,

1

619 =2+ o -1 +16 (5 (3)) o (3

then we have
(5.20) i2 4+ Bi+v <0.

Thus,i € [iy,15], where

S VFTH /PR
2 ’ 2 '

1

In other words,

_é_—M<¢<_é+—M
2 2 - - 2 2
or
/132 __
(5.21) 14+ g‘ < %
We have

6522  F-dy= [||f’||2 ~2|1(3) - f(O)r ~2|f - 1 (;)H |

From (5.21) and (5.22) we easily find that (5.4) holds.
We have to prove thaft (5.4) is sharp. For that purpose, we define the function

1 1 1 1
£t) = W-tt+ L, te0,3)
-4 2 e L]
2 4 327 27

(5.23)

From Lemma 5]1 we see that the above function is absolutely continuous. If we substitute the
above function in the left-hand side ¢f (5.4) then we get

1
.24 L.H. . = —,

If we substitute the above function in the right-hand sid¢ of| (5.4) then we get

1
2 HS () = 1o
(5-25) B S 48

From (5.24) and (5.25) we conclude that {5.4) is sharp. O
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Theorem 5.3.Let f : [a,b] — R be an absolutely continuous function whose derivafive
Ls(a,b). Then

[ s =220 s 21 (‘“2”’) +10)|
<Coa <Hf P2 () -
2l (9])

The above inequality is sharp in the sense that the consgt4rt/3) cannot be replaced by a
smaller one.

(5.26)

Remark 5.4. We have better estimates than (5.26). For example, we have the inequality

2t [ ver (50) + 0] - [ s < i oo

However, note that the estimafe (5.27) can be applied onftyig bounded. On the other hand,
the estimate] (5.26) can be applied for absolutely continuous functighsifL,(a, b).

(5.27)

There are many examples where we cannot apply the estimatg (5.27) but we cah apply (5.26).
Example 5.1. Let us consider the integrg‘{l)1 V/sin t2dt. We have

3 2t cos t?
t) = Vsint? and f'(t) = ——
fo =y IO = e
such thatf’(t) — oo, t — 0 and we cannot apply the estimate (5.27). On the other hand, we

have
16

! 4 2 cos t?
"] dt <
/0 A >] - 9'%1[0&)1(] sin ¢2 / \/smt2
i.e.||f"ll, < 3 and we can apply the estimate (5.26).

6. APPLICATIONS IN NUMERICAL INTEGRATION

Letr = {zg =a <2, <--- <z, = b} be agiven subdivision of the intervial, b] such that
h; = Tiv1 — Ty = h = (b — CL)/TL We define

— (f(wig1) — f(l’i))Q

- (ftay 27 (B 4 f(:vm))Q] ,
doo (s (M) )

lb—a
(6.1) Un(f) = - { n

N =

lo—a
(6.2) nn(f):' [
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and

2

63 (D) = 6= I = 2(£0) - )]

Theorem 6.1. Let = be a given subdivision of the interval, b] and let the assumptions of
Theoreni 52 hold. Then

(6.4)

f t)dt — % |:f(xz) +2f <M) + f(xi+1):| ‘

2
=0
b—a b—a
= ) = et

whereo,(f) andw,(f) are defined by (6]1) anfl (6.3), respectively.

Proof. We have

T + Xij

©5) |12 () + s = [ o= [T koo

where

_ 3witwiga Tt ®ig
{t T, L€ [xz, 5 }

t— $¢+3IB7;+1 t 6 <£B7;+.’Ei+1
)

1 7 Tig)

From Proposition 4|1 we obtain

a2 (B 4 ] - [ fioyi

h3 2
< 17— 5 i) = @)

-

. (f(x» ~of (%) ¥ f(asi+1>>2] B

If we sum [6.5) ovei from 0 to n — 1 and apply the above inequality then we get

1

/f t)dt — ZZ{ +2f<%)+f($i+l)ﬂ

< [Z 15 = (f (i) = f(a))?

- % <f($z‘) —2f (%) + f($i+1)>2] % :

From the above relation and the fact (b—a)/n we see that the first inequality in (6.4) holds.
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Using the Cauchy inequality we have

n—1

©66) > (1713 = 5 (Flae) — 500

=0

1
2

N

<o [IF1E 2 D (Pl - f<xi>>2]

1=0

1
2

[ 112 I 1 2
<171~ 523 (1) - f@)]
Since
1718 = 5 o) = )~ 3 (5600 20 (520 4 )
1
<P = 7 (Flaie) = f)?
we easily conclude that the second inequality in](6.4) holds, too. O

Remark 6.2. The second inequality if (§.4) is coarser than the first inequality. It may be
used to predict the number of steps needed in the compound rule for a given accuracy of the
approximation. Of course, we shall use the first inequality in| (6.4) to obtain the error bound.
Note also that in this last case we use the same valges to calculate the approximation

of the integral ff f(t)dt and to obtain the error bound and recall that function evaluations are
generally considered the computationally most expensive part of quadrature algorithms.

Theorem 6.3. Under the assumptions of Theorem| 6.1 we have

[0 =25 [t +or (B2 4 )] ‘

-1
1=0

b—a b—a
< mnn(f) < mwn(f%
wheren, (f) is defined by[ (6]2).

Proof. The proof of this theorem is similar to the proof of Theoienj 6.1. Here we use Theorem

6.3 O
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