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ABSTRACT. If M, is the weighted power mean of the numberse [a, b] thenQ,.(a,b, z) =
(a" 4 b" — M;)l/r is increasing irr. A new proof of this fact is given.
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1. INTRODUCTION

Supposethdi < a < b,a <z <--- <z, <bandw; are positive weights with ~w; = 1.
The weighted power meand, (z, w) of the numbers:; with weightsw; are defined as

= <Z wwf)g forr #£0, My(z,w)=exp (Z w; log xz) .

It is well-known (cf. [1,2]5]) thatV/, increases withr unless orr; are equal.
In [3] Mercer defined another family of functions

Qr(a,b,z) = (a" + b — M (z,w))"" forr #0,  Qo(a,b,x) = ab/My
and proved the following
Theorem 1.1.Forr <s Q.(a,b,z) < Qs(a,b, x).

The aim of this note is to give another proof of this theorem. We will use the following
version of the Jensen inequality!([4])

Lemma 1.2.If f is convex then

(1.2) f (a—i—b—Zwlxl) < f(a sz ;).
For concavef the inequality reverses.

Our proof differs from the original one:
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Proof. Letz; = \ja + (1 — A\;b). Then
flatb=> wa) = f (Zwl [(1— A a+)\b]>
<Zw1f [(1— N)a+ \b])
<> w1 (a) + A f (b))
= sz a) = Aif(a) + f(b) = (1= X) (D)
ORS Zwi[—wa) — (1= X)f0)]
< f(a) + f(b) = Y wif (wi).

0
2. PROOF OF THEOREM [1.1
Proof. Leta = a"/Q", b= b /Qr, x; = 2t /Qr. Applying (1 .) to the concave functidng x
we obtain
0 =log (Zi+g— Zw@}) > loga+ logg— Zwilog@
=rlog =— o
Q'
which shows thatfor >0 Q_, < Qy <
If 0 < r < s then the functiory (z) = 2*/" is convex and fron.l) we have
_ <
(a +b Z wm) < Z QS
Q)
S0, < Q.
Finally, forr < s <0 fis concave and we obtain> (8—) also equivalent t@), < Q..
Obviously, equality holds if and only if alt;'s are equak or all are equab. O
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